Subject: Re: Principle of Least Surprise
Posted by Jean H. on Tue, 09 Jan 2007 23:14:00 GMT

View Forum Message <> Reply to Message

...and
a[3:5].x=bindgen(3)
works perfectly!

It makes sense though... consider this case:
IDL> b=replicate({x:intarr(10)},10)
IDL> b[3].x = indgen(4)

IDL must understand that the specified array is the values of X in b[3].
If what you had written was working, IDL would not know if it is the
values of X or if it is the 1st value of 4 entries of b...

Jean
JD Smith wrote:
Violated again. Consider:

IDL> a=replicate(1b,10)

IDL> a[3]=bindgen(3)

IDL> print,a
1110121111

but now:

IDL> a=replicate({x:1b},10)

IDL> a[3].x=bindgen(3)

% Expression must be a scalar in this context: <BYTE  Array[3]>.
% Execution halted at: SMAIN$

This ought to work.

JD

VVVVVVVVVVVVVVVYVYVYVYV

Subject: Re: Principle of Least Surprise
Posted by JD Smith on Wed, 10 Jan 2007 00:08:03 GMT

View Forum Message <> Reply to Message

On Tue, 09 Jan 2007 16:14:00 -0700, Jean H. wrote:

> ...and
> a[3:5].x=bindgen(3)

Page 1 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5815
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23873&goto=52092#msg_52092
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=52092
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23873&goto=52241#msg_52241
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=52241
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>

works perfectly!

That doesn't prevent the first case | mentioned.

>
>
>
>
>
>
>

It makes sense though... consider this case:
IDL> b=replicate({x:intarr(10)},10)
IDL> b[3].x = indgen(4)

IDL must understand that the specified array is the values of X in b[3].
If what you had written was working, IDL would not know if it is the
values of X or if it is the 1st value of 4 entries of b...

Sure it would, easily. What is the dimension of b.x:

IDL> help,b.x

<Expression> INT = Array[10, 10]
IDL> help,b[3].x

<Expression> INT = Array[10]

l.e. the latter case has a 10 element array on its LHS, not a single index.

This is exactly analogous to:

IDL> b=intarr(10,10)
IDL> b[3,3]=indgen(4)
IDL> b[5,5]=indgen(4,2)

which IDL isn't confused about. | should equally be able to say:

IDL> b=replicate({x:intarr(10)},10)
IDL> b[3].x[2]=indgen(4,4)

and for it to do the right thing, without requiring index ranges to
make it happen. Why should implicit structure arrays be less capable
than their "normal” brethren?

IDL treats a LHS single index assigned to an array as a base from
which to fill in the entire array.... except that is for structure
dereferenced arrays. Certainly the form a[3:5] works, but it is
inefficient for large assignments, since it unnecessarily generates an
index list [3,4,5] before assigning.

Here's how to see how this hurts:

IDL> a=make_array(/LONG,long(100.e6))
IDL> print,memory(/HIGHWATER)/1024./1024.

382.465

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

382 MB for this array, OK. Now, let make another, one shorter:

IDL> b=make_array(/LONG,long(100.e6)-1L)
IDL> print,memory(/HIGHWATER)/1024./1024.
763.934

Now assign it using the "base index" trick:

IDL> a[1]=b
IDL> print,memory(/HIGHWATER)/1024./1024.
763.934

No additional memory used for the assignment from b to a, as
appropriate. Now, however, use an index range for the assignment, as
you are forced to do with structures:

IDL> a[1L:long(100.e6)-1]=b
IDL> print, memory(/HIGHWATER)/1024./1024.
1145.40

Whoops, we just used 382MB for the useless exercise of creating a large
index list [1,2,...,99999999] to consult while making the assignment.
Not only does this waste memory, it can really slow things down.

JD

Page 3 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

