Subject: nested structures in dim
Posted by Ibusoni on Fri, 12 Jan 2007 12:55:50 GMT

View Forum Message <> Reply to Message

HI Guru's of DLMSs,

| need to convert a rather complex C++ structure to something easy to
manage in IDL.

The data | have to convert are a list of dictionaries of (time,force)
pairs:

For instance to object VOOO belong 2 array ("time and "force") of nO
elements,

to object VOO1 belong 2 array ("time and "force") of nl elements,

to object VOOM belong 2 array ("time and "force") of nm elements.

| know the value of M and of the varius n0, n1, ..., nm only at
run-time, i.e. I don't know in advance how many object | will get from
the query, nor how many elements each one of these objects will
contain.

Hope the description is clear enough.

| tested with a small function that assign to its argument a structure
FOO of structures V00O to V0OO04.

Each substructure contains a pair of array of different length:
v000.time and v000.force are dblarr[3], vOO1.time and vOO1.force are
dblarr[4] and so on.

Here is the code:

static IDL_MEMINT times_dims[] ={ 1,

1}
static IDL_MEMINT force_dims[] ={1, 1

3

static IDL_STRUCT_TAG_DEF substruct_tags[] ={
{"TIME", times_dims, (void *) IDL_TYP_DOUBLE},
{"FORCE", force_dims, (void *) IDL_TYP_DOUBLE},

©

I3
IDL_VPTR IDLTestS(int Argc, IDL_VPTR ArgVv[])
{
IDL_VPTR variabile = Argv[O];
void *s;

void *struct_s;
IDL_MEMINT n_ele=1;

Page 1 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5964
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23925&goto=52210#msg_52210
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=52210
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

// Dummy data
int size=100000;
double *s_data = (double*)malloc(size*sizeof(double));
for (int i=0; i<size; i++){
s_datali]=i;

}

/'l need to create the IDL_STRUCT_TAG_DEF [] at run time
/l because | don't know a priori the number of objects
int n_of_objects=5;
IDL_STRUCT_TAG_DEF *struct_tags = (IDL_STRUCT_TAG_DEF?*)
malloc(sizeof(IDL_STRUCT_TAG_DEF) * (n_of_objects+1));
IDL_STRUCT_TAG_DEF *tag;
for (int i=0; i<n_of_objects; i++){
tag = &struct_tags]i];
tag->name=(char*)malloc(5);
snprintf(tag->name,5,"V%03d",i);
tag->dims=(IDL_MEMINT?*) malloc(2*sizeof(IDL_MEMINT));
tag->dims[0]=1,;
tag->dims[1]=1,;
tag->type=NULL,;
}
// terminating the array of IDL_STRUCT_TAG_DEF
tag = &struct_tags[n_of_objects];
tag->name=0;

/I create substructs

for (int i=0; i<n_of_objects; i++){
char nome[5];
snprintf(nome,5,"V%03d",i);

times_dims[1] = 3+i;
force_dims[1] = 3+i;
s = IDL_MakeStruct(nome, substruct_tags);
struct_tags][i].type =s ;
}
Il create main struct
struct_s = IDL_MakeStruct("FOQ", struct_tags);

I/l see if IDL_STRUCT_TAG_DEF [] is correct
printf("printing struct_tags\n");
{

int itag=0;

IDL_STRUCT_TAG_DEF *tag = &struct_tags][itag];

while (((char*)tag)[0] != 0) {

printf("%s - (%ld %ld) - %p\n",tag->name, tag->dims|[0],
tag->dims[1], tag->type);

Page 2 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

tag = &struct_tags[++itag];
}
}

/[attach data to the created structure

IDL_VPTR vv = IDL_ImportArray(1, &n_ele, IDL_TYP_STRUCT, (UCHAR
*)s_data, idl_free_cb, struct_s);

IDL_VarCopy(vv, variabile);

return IDL_GettmpLong(1);
}

The main point is that, instead of having the IDL_STRUCT_TAG_DEF array
defined at compile time as usual, | need to create this structure at
run time.

That's the output of the test:

IDL> print, tests(a)

% Loaded DLM: TESTS.

printing struct_tags

V00O - (1 1) - 0x823dec4

V001 - (1 1) - 0x823dfbc

V002 - (1 1) - 0x823e0b4

V003 - (1 1) - Ox823elac

V004 - (1 1) - Ox823e2a4

1

IDL> help ,a, /str

** Structure FOO, 7 tags, length=400, data length=400:
TIME DOUBLE Array[3]
FORCE DOUBLE Array[3]
V001 STRUCT ->VO001 Array[1]
V002 STRUCT ->V002 Array[1]
TIME DOUBLE Array[6]
FORCE DOUBLE Array[6]
V004 STRUCT ->V004 Array[1]

IDL> print, a

{ 0.0000000

3.0000000
{

6.0000000

10.000000

H
14.000000
18.000000
19.000000

1.0000000

4.0000000

7.0000000
11.000000

15.000000

20.000000

2.0000000

5.0000000

8.0000000
12.000000

16.000000

21.000000

9.0000000
13.000000

17.000000

22.000000

Page 3 of 7 ----

Generated from

conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

23.000000

}

24.000000 25.000000 26.000000 27.000000
28.000000 29.000000

30.000000 31.000000 32.000000 33.000000
34.000000 35.000000

{

36.000000 37.000000 38.000000 39.000000
40.000000 41.000000 42.000000

43.000000 44.000000 45.000000 46.000000
47.000000 48.000000 49.000000
1
IDL> help, a.v001, /str
** Structure V001, 2 tags, length=64, data length=64:

TIME DOUBLE Array[4]
FORCE DOUBLE Array[4]
IDL>

As you can see, the variable "a" now contains a structure named "FOQO"
containing the correct data, but instead of having a.v000, a.v001, ...,
a.v004, V000 and V003 (in this example) have not been created
correctly.

Of course there's nothing special in VOO0 and vO0003 and indeed this
behaviour changes from time to time, (sometimes all the substructures
are OK).

It seems that me and IDL_MakeStruct got confused :)

Any idea of what's happening? My code is completely crazy?
Thanks

Lorenzo

Subject: Re: nested structures
Posted by Phillip Bitzer on Mon, 27 May 2013 15:03:01 GMT

View Forum Message <> Reply to Message

You can certainly do what you're after. In fact, | do this sort of thing when building arrays of radar
data, which may have different lengths, sizes, etc.

First, some basic pointer stuff:

Consider:
IDL> sl = {tagl1:0L, tag2:PTR_NEW(/ALLOCATE)}

Then,

IDL> help, s1

** Structure <314b91d8>, 2 tags, length=8, data length=8, refs=1.
TAG1 LONG 0

Page 4 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5770
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23925&goto=84454#msg_84454
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=84454
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

TAG2 POINTER <PtrHeapVarl4>

So, we see tag?2 is a pointer. Fine, let's assign the pointer to a (new) structure:
IDL> *sl1.tag2 = {ntag1:0L, nTag2:0L}

Okey doke. So, sl.tag? is the pointer, and when we dereference this:
IDL> help, *s1.tag2
** Structure <1dc84338>, 2 tags, length=8, data length=8, refs=1:
NTAG1 LONG 0
NTAG2 LONG 0

we see our (new) structure.

What about getting to one of these tags? Notice this doesn't work:
IDL> help, *s1.tag2.ntag2

% Expression must be a structure in this context: <No name>.

% Execution halted at: $MAIN$

But this does:

IDL> help, (*s1l.tag2).ntag2

<Expression> LONG = 0

Remember, *sl.tag?2 is the pointer, and that's what what we want to dereference. That's why the
parentheses are where they are.

Arrays of structures with pointers can be a little more tricky, because you'll be throwing brackets in
there too. Just keep in mind where the pointer is.

Further, you'll want to take a look a this for the initialization:

http://www.idlcoyote.com/code_tips/structptrinit.html

Subject: Re: nested structures
Posted by hannah_ue on Tue, 28 May 2013 07:28:17 GMT

View Forum Message <> Reply to Message

Thank you Phillip, that helped. | finally figured out (I hope) how to reference to the array of
structures in the array of structures and how to replicate those independently. | think I'm getting on
now.

Am Montag, 27. Mai 2013 17:03:01 UTC+2 schrieb Phillip Bitzer:
> You can certainly do what you're after. In fact, | do this sort of thing when building arrays of

radar data, which may have different lengths, sizes, etc.
>

>
>

Page 5 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7680
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23925&goto=84441#msg_84441
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=84441
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVVYVVYVYVYVYVYV

First, some basic pointer stuff:

Consider:

IDL> s1 = {tag1:0L, tag2:PTR_NEW(/ALLOCATE)}

Then,

IDL> help, s1

** Structure <314b91d8>, 2 tags, length=8, data length=8, refs=1.
TAG1 LONG 0

TAG2 POINTER <PtrHeapVarl4>

So, we see tag2 is a pointer. Fine, let's assign the pointer to a (new) structure:

IDL> *sl1.tag2 = {ntag1:0L, nTag2:0L}

Okey doke. So, sl.tag? is the pointer, and when we dereference this:

IDL> help, *s1.tag2

** Structure <1dc84338>, 2 tags, length=8, data length=8, refs=1:
NTAG1 LONG 0

NTAG2 LONG 0

we see our (new) structure.

What about getting to one of these tags? Notice this doesn't work:

IDL> help, *s1.tag2.ntag2

Page 6 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

% Expression must be a structure in this context: <No name>.

% Execution halted at: $MAIN$

But this does:
IDL> help, (*s1.tag2).ntag2

<Expression> LONG = 0

VVVVVVVVYVVYVYVYVYVYV

Remember, *sl1.tag2 is the pointer, and that's what what we want to dereference. That's why

the parentheses are where they are.
>

>
>
> Arrays of structures with pointers can be a little more tricky, because you'll be throwing brackets

in there too. Just keep in mind where the pointer is.
>

Further, you'll want to take a look a this for the initialization:

VVVYVYVYVYV

http://www.idlcoyote.com/code_tips/structptrinit.html

Page 7 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

