Subject: TRIANGULATE. Finding contiguous cells efficiently?
Posted by Libertan on Sat, 24 Feb 2007 02:39:39 GMT

View Forum Message <> Reply to Message

Re: finding a cell's three contiguous neighbours in a Delaunay
Triangulation.

Dear IDL users,

| have searched this group, but cannot seem to find the solution to my
problem.

TRIANGULATE is a wonderful function, and is very fast indeed. | would
like to write a comparably expeditious routine for finding each

triangular cell's three contiguous (edge-sharing neighbour) cells. 1
would imagine that this is done frequently, and is conceptually rather
staright forwards.

TRIANGULATE,x,y, TR

| understand that TR is a [3,N] array which essentially tells me the
three vertices of each of the N triangular Delaunay cells. It
certainly contains sufficient information to find an interior cell's 3
contiguous neighbouring cells. Clearly, contiguous cells have two
vertices in common.

My question: For a given row in TR, let us say row n, how best to find

all the other rows in TR which share two elements with row n? (The
algorithm must of course reject row n in its resulting list). | have

a rather inefficient solution, by far the slowest part of my code, and

I'm desperate to increase its speed (hopefully ten fold). My routine

uses one FOR loop (over cells n) within which are many WHERE commands
(which search for neighbour candidates).

My thoughts: Is there a clever way of solving the problem using subtle
IDL techniques/routines? Speed is key. Can it be entirely

vectorized? | even thought VORONOI (being so fast and triangulate's so-
called 'dual’) might yield some helpful clues (apparently not).
TRIANGULATE's connectivity list seems to be more of a distraction than
a help, since I'm after neighbouring cells not neighbouring generator
points.

A replacement solution would be a serious contribution to my research
(and of course would be acknowledged upon publication of a paper), and
| would be happy to do speed comparisons if desired.

Yours.

Page 1 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6000
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24123&goto=52729#msg_52729
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=52729
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: TRIANGULATE. Finding contiguous cells efficiently?
Posted by JD Smith on Thu, 01 Mar 2007 22:42:29 GMT

View Forum Message <> Reply to Message

On Fri, 23 Feb 2007 18:39:39 -0800, Libertan wrote:

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVYVYVYVYVYV

Re: finding a cell's three contiguous neighbours in a Delaunay
Triangulation.

Dear IDL users,

| have searched this group, but cannot seem to find the solution to my
problem.

TRIANGULATE is a wonderful function, and is very fast indeed. | would
like to write a comparably expeditious routine for finding each triangular
cell's three contiguous (edge-sharing neighbour) cells. | would imagine
that this is done frequently, and is conceptually rather staright

forwards.

TRIANGULATE,x,y,TR

| understand that TR is a [3,N] array which essentially tells me the three
vertices of each of the N triangular Delaunay cells. It certainly

contains sufficient information to find an interior cell's 3 contiguous
neighbouring cells. Clearly, contiguous cells have two vertices in
common.

My question: For a given row in TR, let us say row n, how best to find all

the other rows in TR which share two elements with row n? (The algorithm

must of course reject row n in its resulting list). | have a rather

inefficient solution, by far the slowest part of my code, and I'm

desperate to increase its speed (hopefully ten fold). My routine uses one

FOR loop (over cells n) within which are many WHERE commands (which search
for neighbour candidates).

My thoughts: Is there a clever way of solving the problem using subtle IDL
techniques/routines? Speed is key. Can it be entirely vectorized? | even
thought VORONOI (being so fast and triangulate's so- called 'dual’) might
yield some helpful clues (apparently not). TRIANGULATE's connectivity list
seems to be more of a distraction than a help, since I'm after

neighbouring cells not neighbouring generator points.

A replacement solution would be a serious contribution to my research (and
of course would be acknowledged upon publication of a paper), and | would
be happy to do speed comparisons if desired.

To such problems there are generally two types of solution: sort-based
and array-based. The latter is a brute force solution which usually

Page 2 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24123&goto=52743#msg_52743
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=52743
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

involve a large amount of memory, setting IDL loose en masse on that
block of memory (something it's very good at). Such a method usually
scales as N"2, where N is the number of elements. If you can fit N2
elements into memory, brute force is usually faster. However, it

suffers quite horribly when it hits your memory limits. SORT based
methods are not as fast for small N, but scale well with N (usually as

N log(N)), so are more appropriate when you don't know in advance the
size of your problem (e.g. sometimes you have 100 triangles, and
sometimes a million).

In both of these cases, however, the best approach, if at all

possible, is to reduce N somehow to begin with, ideally to a small

fixed number. Here, it seems that the connectivity array will allow

you to do just this. Itis a "reverse indices" style array, which you

can read about in the HISTOGRAM tutorial. We used just this array in
the "5th nearest neighbor” problem as well:
http://www.dfanning.com/code_tips/slowloops.html. You can use it here
as follows:

1. Compute the triangulation with connectivity vector C.

2. For a given triangle of interest T, for each edge of T, find the
sets of points connected to both the points in the edge.

3. Find the point in common among these two sets: your adjacent
triangle consists of the edge and this point.

Here's some test code which implements this. It uses the "brute
force" array comparison method, which is not so brute given that
points are connected directly only to a handful of other points.

;; Find triangles adjacent to an edge for a given triangulation
tvict,[255,0,0],[0,255,0],[0,0,255],1

n=25

x=randomu(sd,n) & y=randomu(sd,n)
plot,x,y,PSYM=4,SYMSIZE=4

triangulate,x,y,t, CONNECTIVITY=c

p=n/2 ; which triangle to consider
w=[0,1,2,0]

for i=0,(size(t,/DIMENSIONS))[1]-1 do plots,x[t[w,i]],y[t[w,i]]
plots,x[t[w,p]],y[t[w,p]], COLOR=1,PSYM=-4, THICK=2

adj=make_array(3,VALUE=-1L)

Page 3 of 5 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

extra=ad]
tp=t[*,p] ; the triangle to match

for i=0,2 do begin
n=(i+1) mod 3

if i gt O then begin
cl=c2 & ncl=nc2

endif else begin
cl=c[c[tp[O]]:c[tp[0]+1]-1]
ncl=n_elements(cl)

endelse

c2=c[c[tp[n]]:c[tp[n]+1]-1] ;points connected to second point in edge
nc2=n_elements(c2)

;; Find the adjacent point(s) in common, and not on this triangle
w=where(rebin(c1,ncl,nc2,/SAMP) eq rebin(transpose(c2),ncl,nc2,/SAMP),cnt)
if cnt eq 0 then continue

cb=c2[w/ncl]

;; Find the points in common *not* on the triangle
w=where(total(rebin(transpose(cb),3,cnt,/SAMP) ne $

rebin(tp,3,cnt,/SAMP),1,/PRESERVE_TYPE) eq 3b,cnt)
if cnt eq O then continue

adj[i]=cb[w[0]] ; note: there could be more than 1
if cnt gt 1 then extrali]=cb[w[1]]
endfor

for i=0,2 do begin
if adj[i] eq -1 then continue
;; If an extra was stored, swap it in if this one is a repeat
if extra[i] ge 0 && total(adj eq adj[i],/PRESERVE_TYPE) gt 1 then $
adj[i]=extrali]

n=(i+1) mod 3
plots,x[adj[i]],y[ad][i]],PSYM=4,COLOR=2,SYMSIZE=4,THICK=2
plots, [X[tp[i]].x[adj[i]]].[y[tp[i]].y[ad][i]], COLOR=2
poll?ts,[X[tp[n]],X[adj[i]]],[y[tp[n]],y[adj[i]]],COLOR=2

endfor

At the end, 'adj' contains the 3 points which, when combined with the
three edges, produce the desired adjacent triangles.

Note that the problem is somewhat ill-defined. Some triangles have
edges on the boundary, which don't have an adjacent triangle (in which

Page 4 of 5 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

case 'adj" will contain -1 for that edge). Occasionally, a given edge
may have more than 1 valid adjacent triangles (think of a diamond with
a horizontal line across the middle, and another point above this
bisector line). Here | keep an 'extra’ point set vector, and at the

end, swap in the extra one if this would result in less duplication.
Maybe you don't care about this, and could speed it up by removing
this test. Run this many times and you'll find a random case which
illustrates the point. 1 think, but have not proved, that there will

be at most 2 such adjacency triangles (hence | only store 1).

For large triangulations, this method should be much faster than any
of the other methods mentioned, since it looks only at the ~5-10
connected points for each vertex, independent of the total number of
points.

JD

Page 5 of 5 ---- Cenerated from conp. |l ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

