
Subject: TRIANGULATE. Finding contiguous cells efficiently?
Posted by Libertan on Sat, 24 Feb 2007 02:39:39 GMT
View Forum Message <> Reply to Message

Re: finding a cell's three contiguous neighbours in a Delaunay
Triangulation.

Dear IDL users,

I have searched this group, but cannot seem to find the solution to my
problem.

TRIANGULATE is a wonderful function, and is very fast indeed. I would
like to write a comparably expeditious routine for finding each
triangular cell's three contiguous (edge-sharing neighbour) cells. I
would imagine that this is done frequently, and is conceptually rather
staright forwards.

TRIANGULATE,x,y,TR

I understand that TR is a [3,N] array which essentially tells me the
three vertices of each of the N triangular Delaunay cells. It
certainly contains sufficient information to find an interior cell's 3
contiguous neighbouring cells. Clearly, contiguous cells have two
vertices in common.

My question: For a given row in TR, let us say row n, how best to find
all the other rows in TR which share two elements with row n? (The
algorithm must of course reject row n in its resulting list). I have
a rather inefficient solution, by far the slowest part of my code, and
I'm desperate to increase its speed (hopefully ten fold). My routine
uses one FOR loop (over cells n) within which are many WHERE commands
(which search for neighbour candidates).

My thoughts: Is there a clever way of solving the problem using subtle
IDL techniques/routines? Speed is key. Can it be entirely
vectorized? I even thought VORONOI (being so fast and triangulate's so-
called 'dual') might yield some helpful clues (apparently not).
TRIANGULATE's connectivity list seems to be more of a distraction than
a help, since I'm after neighbouring cells not neighbouring generator
points.

A replacement solution would be a serious contribution to my research
(and of course would be acknowledged upon publication of a paper), and
I would be happy to do speed comparisons if desired.

Yours.

Page 1 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6000
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24123&goto=52729#msg_52729
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=52729
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: TRIANGULATE. Finding contiguous cells efficiently?
Posted by JD Smith on Thu, 01 Mar 2007 22:42:29 GMT
View Forum Message <> Reply to Message

On Fri, 23 Feb 2007 18:39:39 -0800, Libertan wrote:

> Re: finding a cell's three contiguous neighbours in a Delaunay
> Triangulation.
>
> Dear IDL users,
>
> I have searched this group, but cannot seem to find the solution to my
> problem.
>
> TRIANGULATE is a wonderful function, and is very fast indeed. I would
> like to write a comparably expeditious routine for finding each triangular
> cell's three contiguous (edge-sharing neighbour) cells. I would imagine
> that this is done frequently, and is conceptually rather staright
> forwards.
>
> TRIANGULATE,x,y,TR
>
> I understand that TR is a [3,N] array which essentially tells me the three
> vertices of each of the N triangular Delaunay cells. It certainly
> contains sufficient information to find an interior cell's 3 contiguous
> neighbouring cells. Clearly, contiguous cells have two vertices in
> common.
>
> My question: For a given row in TR, let us say row n, how best to find all
> the other rows in TR which share two elements with row n? (The algorithm
> must of course reject row n in its resulting list). I have a rather
> inefficient solution, by far the slowest part of my code, and I'm
> desperate to increase its speed (hopefully ten fold). My routine uses one
> FOR loop (over cells n) within which are many WHERE commands (which search
> for neighbour candidates).
>
> My thoughts: Is there a clever way of solving the problem using subtle IDL
> techniques/routines? Speed is key. Can it be entirely vectorized? I even
> thought VORONOI (being so fast and triangulate's so- called 'dual') might
> yield some helpful clues (apparently not). TRIANGULATE's connectivity list
> seems to be more of a distraction than a help, since I'm after
> neighbouring cells not neighbouring generator points.
>
> A replacement solution would be a serious contribution to my research (and
> of course would be acknowledged upon publication of a paper), and I would
> be happy to do speed comparisons if desired.

To such problems there are generally two types of solution: sort-based
and array-based. The latter is a brute force solution which usually

Page 2 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24123&goto=52743#msg_52743
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=52743
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

involve a large amount of memory, setting IDL loose en masse on that
block of memory (something it's very good at). Such a method usually
scales as N^2, where N is the number of elements. If you can fit N^2
elements into memory, brute force is usually faster. However, it
suffers quite horribly when it hits your memory limits. SORT based
methods are not as fast for small N, but scale well with N (usually as
N log(N)), so are more appropriate when you don't know in advance the
size of your problem (e.g. sometimes you have 100 triangles, and
sometimes a million).

In both of these cases, however, the best approach, if at all
possible, is to reduce N somehow to begin with, ideally to a small
fixed number. Here, it seems that the connectivity array will allow
you to do just this. It is a "reverse indices" style array, which you
can read about in the HISTOGRAM tutorial. We used just this array in
the "5th nearest neighbor" problem as well:
http://www.dfanning.com/code_tips/slowloops.html. You can use it here
as follows:

1. Compute the triangulation with connectivity vector C.

2. For a given triangle of interest T, for each edge of T, find the
 sets of points connected to both the points in the edge.

3. Find the point in common among these two sets: your adjacent
 triangle consists of the edge and this point.

Here's some test code which implements this. It uses the "brute
force" array comparison method, which is not so brute given that
points are connected directly only to a handful of other points.

 ==
===============
;; Find triangles adjacent to an edge for a given triangulation
tvlct,[255,0,0],[0,255,0],[0,0,255],1
n=25
x=randomu(sd,n) & y=randomu(sd,n)
plot,x,y,PSYM=4,SYMSIZE=4

triangulate,x,y,t,CONNECTIVITY=c

p=n/2 ; which triangle to consider

w=[0,1,2,0]
for i=0,(size(t,/DIMENSIONS))[1]-1 do plots,x[t[w,i]],y[t[w,i]]
plots,x[t[w,p]],y[t[w,p]],COLOR=1,PSYM=-4,THICK=2

adj=make_array(3,VALUE=-1L)

Page 3 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

extra=adj
tp=t[*,p] ; the triangle to match

for i=0,2 do begin
 n=(i+1) mod 3

 if i gt 0 then begin
 c1=c2 & nc1=nc2
 endif else begin
 c1=c[c[tp[0]]:c[tp[0]+1]-1]
 nc1=n_elements(c1)
 endelse

 c2=c[c[tp[n]]:c[tp[n]+1]-1] ;points connected to second point in edge
 nc2=n_elements(c2)

 ;; Find the adjacent point(s) in common, and not on this triangle
 w=where(rebin(c1,nc1,nc2,/SAMP) eq rebin(transpose(c2),nc1,nc2,/SAMP),cnt)
 if cnt eq 0 then continue
 cb=c2[w/nc1]

 ;; Find the points in common *not* on the triangle
 w=where(total(rebin(transpose(cb),3,cnt,/SAMP) ne $
 rebin(tp,3,cnt,/SAMP),1,/PRESERVE_TYPE) eq 3b,cnt)
 if cnt eq 0 then continue
 adj[i]=cb[w[0]] ; note: there could be more than 1
 if cnt gt 1 then extra[i]=cb[w[1]]
endfor

for i=0,2 do begin
 if adj[i] eq -1 then continue
 ;; If an extra was stored, swap it in if this one is a repeat
 if extra[i] ge 0 && total(adj eq adj[i],/PRESERVE_TYPE) gt 1 then $
 adj[i]=extra[i]

 n=(i+1) mod 3
 plots,x[adj[i]],y[adj[i]],PSYM=4,COLOR=2,SYMSIZE=4,THICK=2
 plots,[x[tp[i]],x[adj[i]]],[y[tp[i]],y[adj[i]]],COLOR=2
 plots,[x[tp[n]],x[adj[i]]],[y[tp[n]],y[adj[i]]],COLOR=2
endfor
 ==
===============

At the end, 'adj' contains the 3 points which, when combined with the
three edges, produce the desired adjacent triangles.

Note that the problem is somewhat ill-defined. Some triangles have
edges on the boundary, which don't have an adjacent triangle (in which

Page 4 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

case 'adj' will contain -1 for that edge). Occasionally, a given edge
may have more than 1 valid adjacent triangles (think of a diamond with
a horizontal line across the middle, and another point above this
bisector line). Here I keep an 'extra' point set vector, and at the
end, swap in the extra one if this would result in less duplication.
Maybe you don't care about this, and could speed it up by removing
this test. Run this many times and you'll find a random case which
illustrates the point. I think, but have not proved, that there will
be at most 2 such adjacency triangles (hence I only store 1).

For large triangulations, this method should be much faster than any
of the other methods mentioned, since it looks only at the ~5-10
connected points for each vertex, independent of the total number of
points.

JD

Page 5 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

