Subject: Re: position matching
Posted by Paolo Grigis on Tue, 15 May 2007 14:14:56 GMT

View Forum Message <> Reply to Message

Seems to be a recurring theme... here's a nice article:
http://www.dfanning.com/code_tips/slowloops.html

Ciao,
Paolo

cmancone@ufl.edu wrote:
Hi everyone,

A common task | have to do is take two lists of stars with x & y
positions and match up the closest stars within a certain radius (so
that each star has at most one match, that one being the best match).
A long time ago | wrote some code to do this that gets the job done,
but probably not in the fastest way. It just uses a for loop over one
of the lists and uses a where to search for the closest star to each
star on the other list. Most of the time this is more than adequate,
but anytime my star lists get around 10000-20000 stars each (which
happens on a not-so irregular basis) the program turns into quite a
beast and takes its sweet time (i.e. a minute or two). Granted, this
isn't exactly research-stopping time delays, but I'm sure that with a
well thought-out algorithm, the execution time could be pulled down to
a handful of seconds. The problem is, | have yet to come up with a
well thought-out algorithm. I'm sure I'm not the only one who has run
into this, so | was hoping there might be someone else out there that
has dealt with the same thing, and knows a better way.

-Conor

VVVVVVVVVVVVVVYVYVYVYVYV

Subject: Re: position matching
Posted by cmancone on Tue, 15 May 2007 14:36:13 GMT

View Forum Message <> Reply to Message

Yes, | read that article. However, it doesn't quite translate well

into what | need. It presents two methods, one using arrays, the
other using a Delaunay triangulation (DT). For my purposes (20,000
stars) the array method won't work - it requires way too much memory
(I pondered a similar solution myself). That leaves the DT method.
There's two problems with this. First, | don't just need the closest
neighbor, | need the closest neighbor within a certain distance.
Persumably, this is easily solved with a properly placed WHERE or IF
statement. The bigger problem, however, is that | am matching up two
separate lists, and | can't have stars on one list matching up stars

on the same list. The DT doesn't make any distinction between stars

Page 1 of 10 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4906
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24574&goto=54008#msg_54008
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=54008
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6086
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24574&goto=54005#msg_54005
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=54005
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

as far as | can tell. You give it one combined list, and it finds the
closest stars no matter where they come from, which is a problem.
I've been trying to figure out just how the DT works, so | can
determine if it is possible to disentangle the two star lists or not.
It's a bit confusing though, and | have yet to determine if it will
work for my purposes.

On May 15, 10:14 am, Paolo Grigis <pgri...@astro.phys.ethz.ch> wrote:

> Seems to be a recurring theme... here's a nice article:
>

> http://www.dfanning.com/code_tips/slowloops.html

>

> Ciao,

> Paolo

>

> cmanc...@ufl.edu wrote:

>> Hi everyone,

>> A common task | have to do is take two lists of stars with x & y

>> positions and match up the closest stars within a certain radius (so
>> that each star has at most one match, that one being the best match).
>> A long time ago | wrote some code to do this that gets the job done,
>> but probably not in the fastest way. It just uses a for loop over one
>> of the lists and uses a where to search for the closest star to each

>> star on the other list. Most of the time this is more than adequate,

>> but anytime my star lists get around 10000-20000 stars each (which
>> happens on a not-so irregular basis) the program turns into quite a
>> peast and takes its sweet time (i.e. a minute or two). Granted, this
>> jsn't exactly research-stopping time delays, but I'm sure that with a
>> well thought-out algorithm, the execution time could be pulled down to
>> a handful of seconds. The problem is, | have yet to come up with a
>> well thought-out algorithm. I'm sure I'm not the only one who has run
>> into this, so | was hoping there might be someone else out there that
>> has dealt with the same thing, and knows a better way.

>> -Conor

Subject: Re: position matching
Posted by Edd Edmondson on Tue, 15 May 2007 15:11:34 GMT

View Forum Message <> Reply to Message

cmancone@ufl.edu wrote:

> Hi everyone,

> A common task | have to do is take two lists of stars with x & y

> positions and match up the closest stars within a certain radius (so

> that each star has at most one match, that one being the best match).
> A long time ago | wrote some code to do this that gets the job done,

> but probably not in the fastest way. It just uses a for loop over one
> of the lists and uses a where to search for the closest star to each

Page 2 of 10 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4549
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24574&goto=54004#msg_54004
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=54004
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

star on the other list. Most of the time this is more than adequate,

but anytime my star lists get around 10000-20000 stars each (which
happens on a not-so irregular basis) the program turns into quite a
beast and takes its sweet time (i.e. a minute or two). Granted, this
isn't exactly research-stopping time delays, but I'm sure that with a
well thought-out algorithm, the execution time could be pulled down to
a handful of seconds. The problem is, | have yet to come up with a
well thought-out algorithm. I'm sure I'm not the only one who has run
into this, so | was hoping there might be someone else out there that
has dealt with the same thing, and knows a better way.

VVVVYVYVVYVYVYV

| think you were right in your followup post to the other replier that
DTs will at best be tricky to use thanks to your dual lists. | do this
fairly often but not in IDL (in Perl in fact, and end up doing some
quite ugly things as a result).

Since you need a search within a given radius (from your other post)

I'd first sort the longer list and use a binary search to get the

subset of stars within that radius in one coordinate. Then search
through that much smaller subset using one of the fast but
memory-hungry techniques David F has on his pages. By that point you
should have narrowed things down enough to not have to consume vast
amounts of memory for the job.

Edd

Subject: Re: position matching
Posted by Paolo Grigis on Tue, 15 May 2007 15:14:33 GMT

View Forum Message <> Reply to Message

cmancone@ufl.edu wrote:

> Yes, | read that article. However, it doesn't quite translate well
> into what | need. It presents two methods, one using arrays, the

> other using a Delaunay triangulation (DT). For my purposes (20,000
> stars) the array method won't work - it requires way too much memory
> (I pondered a similar solution myself).

Ok, I guess | misread your problem... but what if you divide up the first
list in, say, 20 chunks of 1000 stars each and use the array method on
each chunk (such that you get a 1000 by 20'000 array) separately?

You can do that since you want the minimum distance of each star in the
first list from all the stars in the 2nd, right? So it doesn't matter how
many stars in the first list you process each time.

Ciao,
Paolo

Page 3 of 10 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4906
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24574&goto=54003#msg_54003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=54003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Th

VVVVVVVYVYVYVYVYVYVYV

VVVYVYVYVYV
VVVYVYVYVYV

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>

>

at leaves the DT method.

There's two problems with this. First, | don't just need the closest
neighbor, | need the closest neighbor within a certain distance.
Persumably, this is easily solved with a properly placed WHERE or IF
statement. The bigger problem, however, is that | am matching up two
separate lists, and | can't have stars on one list matching up stars

on the same list. The DT doesn't make any distinction between stars
as far as | can tell. You give it one combined list, and it finds the
closest stars no matter where they come from, which is a problem.
I've been trying to figure out just how the DT works, so | can
determine if it is possible to disentangle the two star lists or not.

It's a bit confusing though, and | have yet to determine if it will

work for my purposes.

On May 15, 10:14 am, Paolo Grigis <pgri...@astro.phys.ethz.ch> wrote:

Seems to be a recurring theme... here's a nice article:
http://www.dfanning.com/code _tips/slowloops.html
Ciao,

Paolo

cmanc...@ufl.edu wrote:

> Hi everyone,

> A common task | have to do is take two lists of stars with x & y

> positions and match up the closest stars within a certain radius (so

> that each star has at most one match, that one being the best match).
> A long time ago | wrote some code to do this that gets the job done,

> but probably not in the fastest way. It just uses a for loop over one

> of the lists and uses a where to search for the closest star to each

> star on the other list. Most of the time this is more than adequate,

> but anytime my star lists get around 10000-20000 stars each (which
> happens on a not-so irregular basis) the program turns into quite a

> beast and takes its sweet time (i.e. a minute or two). Granted, this

> isn't exactly research-stopping time delays, but I'm sure that with a

> well thought-out algorithm, the execution time could be pulled down to
> a handful of seconds. The problem is, | have yet to come up with a

> well thought-out algorithm. I'm sure I'm not the only one who has run
> into this, so | was hoping there might be someone else out there that
> has dealt with the same thing, and knows a better way.

> -Conor

Pag

e 4 of 10 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: position matching
Posted by Edd Edmondson on Tue, 15 May 2007 15:25:41 GMT

View Forum Message <> Reply to Message

Edd Edmondson <edd@cheetah.slarti.org.uk> wrote:

> Since you need a search within a given radius (from your other post)
> [I'd first sort the longer list and use a binary search to get the

> subset of stars within that radius in one coordinate.

NN\

or um, just a WHERE(). I've clearly spent too long out of IDLIand.

Edd

Subject: Re: position matching
Posted by cmancone on Tue, 15 May 2007 15:55:29 GMT

View Forum Message <> Reply to Message

It's amaizing how simpler it looks when you change "binary search" to
"where()" :) Hopefully I'll have a chance to try these suggestions
out today, and report back on the results.

On May 15, 11:25 am, Edd Edmondson <e...@cheetah.slarti.org.uk> wrote:
> Edd Edmondson <e...@cheetah.slarti.org.uk> wrote:

>> Since you need a search within a given radius (from your other post)
>> |'d first sort the longer list and use a binary search to get the

>> subset of stars within that radius in one coordinate.

NN\

or um, just a WHERE(). I've clearly spent too long out of IDLIand.

Edd

V VVVYVYV

Subject: Re: position matching
Posted by cmancone on Wed, 16 May 2007 14:09:22 GMT

View Forum Message <> Reply to Message

| attempted your suggestion, and it certainly helped. Execution time
went from about 2 minutes to roughly 5 seconds. I'd say that's quite
an improvement. I'm sure it could get faster, but | think 5 seconds
is good enough.

On May 15, 11:25 am, Edd Edmondson <e...@cheetah.slarti.org.uk> wrote:
> Edd Edmondson <e...@cheetah.slarti.org.uk> wrote:

Page 5 of 10 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4549
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24574&goto=54001#msg_54001
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=54001
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6086
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24574&goto=54000#msg_54000
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=54000
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6086
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24574&goto=54087#msg_54087
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=54087
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> Since you need a search within a given radius (from your other post)
>> |'d first sort the longer list and use a binary search to get the
>> subset of stars within that radius in one coordinate.

AN

or um, just a WHERE(). I've clearly spent too long out of IDLland.

Edd

VVVVYVYV

Subject: Re: position matching
Posted by JD Smith on Wed, 16 May 2007 20:47:16 GMT

View Forum Message <> Reply to Message

On Tue, 15 May 2007 07:36:13 -0700, cmancone wrote:

Yes, | read that article. However, it doesn't quite translate well into

what | need. It presents two methods, one using arrays, the other using a
Delaunay triangulation (DT). For my purposes (20,000 stars) the array
method won't work - it requires way too much memory (I pondered a similar
solution myself). That leaves the DT method. There's two problems with
this. First, | don't just need the closest neighbor, | need the closest
neighbor within a certain distance. Persumably, this is easily solved with

that | am matching up two separate lists, and | can't have stars on one
list matching up stars on the same list. The DT doesn't make any
distinction between stars as far as | can tell. You give it one combined
list, and it finds the closest stars no matter where they come from, which
is a problem. I've been trying to figure out just how the DT works, so |
can determine if it is possible to disentangle the two star lists or not.

It's a bit confusing though, and | have yet to determine if it will work

for my purposes.

VVVVVVVVVYVVYVYVYVYVYV

The DT is just a cheeky way to organize points in 2D (and higher
dimension, but less efficiently). That algorithm uses the fact that

the DT graph has as a sub-graph the nearest neighbors. Then you can
start with your star of interest, and work your way out to nearby

stars along the DT lines, to find the Nth nearest neighbor, by
comparing a small number of stars. For matching two lists, this, as
you pointed out, is awkward.

As Paolo noted, the array method can be made to work by dividing it
into "fits in memory" sized chunks. As also mentioned on the page you
read, such a method doesn't necessarily mean you're doing it the most
efficient way (just maximizing the brute force throughput). For
searching 20,000 stars, however, the segmented brute force approach
with arrays will probably work fine. | could do 20000x20000 in under

Page 6 of 10 ---- Cenerated from conp. |l ang. i dl - pvwave archive

a properly placed WHERE or IF statement. The bigger problem, however, is

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24574&goto=54080#msg_54080
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=54080
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

a minute on my (slowish) machine with 2GB. | suspect if you get just
a few min for similar sizes with a purely loop solution, your machine
is much faster than mine. Here's an implementation. Tune 'chunk’,
which limits the size of arrays to compare, to optimize speed.

; Match stars in one list to another, with brute force array techniques
n1=20000

x1=randomu(sd,n1)

yl=randomu(sd,nl)

n2=nl
x2=randomu(sd,n2)
y2=randomu(sd,n2)

t=systime(1)

;; Divide the problem into manageable chunks: use [x2,y2] in full
chunk=1.e6 ;largest number of elements to check at once
nchunk=ceil(n1/(float(chunk)/n2))>2

nlpiece=ceil(float(nl)/nchunk)

print,nchunk,” Chunks of size ',nlpiece,'x',n2
max_r=.001 ;maximum allowed radius

mpos=lonarr(nl)
for i=0L,nchunk-1 do begin
low=n1lpiece*i
high=(n1piece*(i+1))<(nl-1)
cnt=high-low+1
d=(rebin(x2,n2,cnt,/SAMPLE)- $
rebin(transpose(x1[low:high]),n2,cnt,/SAMPLE))"2+ $
(rebin(y2,n2,cnt,/SAMPLE)- $
rebin(transpose(yl[low:high]),n2,cnt,/SAMPLE))"2
void=min(d,DIMENSION=1,p)
mpos[low]=p mod n2
wh=where(sqrt(d[p]) gt max_r,cnt)
if cnt gt 0 then mpos[wh]=-1L
endfor

print,systime(1)-t

That works well enough, but is certainly not optimal. It uses the

Page 7 of 10 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

full set of [x2,y2] stars, comparing them against chunks of stars from
the list [x1,y1] at a time. All stars on the target list are compared
to all stars on the search list.

In all cases like this, the best approach to speed up the calculation
is to think to yourself "how can | reduce the number of possible
points which must be matched, *before* | commence the matching”. For
closest match in a single set of stars, this led to the DT method. In
this case, you have set a natural scale to the problem, max_r, which
will be *very* useful, allowing you to subdivide and conquer. The
argument is as follows. If you bin the search stars into bins of size
2*max_r, the closest point to a given target star [x,y], which is at
least as close as max_r in radius, *must* fall into one of 4 bins (the
bin which [x,y] is in, and the three bins to the upper-left,

upper-right, lower-left, or lower-right of it, depending on where it
falls in its bin). If there is no star in any of those bins, then

there is no star within max_r.

I'll use HIST_ND to bin the search stars into a large grid. Then,

instead of searching *all* points for the closest, I'll only search

ones which fell in that bin (conveniently indexed using
REVERSE_INDICES), and the relevant 3 adjacent bins (depending on
location within the bin). You can use the same "brute-force" array

tricks here *within* the bin, but of course they are infinitely

faster, as you've pre-trimmed out the vast majority of possible

matches. Sprinkle in a few more vectorizing HISTOGRAM tricks (in
particular the DUAL HISTOGRAM method, as described in the DRIZZLE
discussion), and you get the code below.

With this code, matching 20000x20000 points takes almost no time at
all, 0.1s. | can match 1,000,000 vs. 1,000,000 stars in roughly 4.5
seconds, with a strong dependence on the initial binning size (too
coarse, and bins will have too many points to fit in memory, too
sparse, and you'll have too many empty bins). If your maximum radius
is tiny (compared to the maximum distance between stars), it probably
pays just to make larger bin sizes, and then weed out the ones which
are "too far" post-facto (I've left that undone -- a simple WHERE wiill
suffice). If your maximum radius is large, the bin size will be too
coarse, and you won't have removed many for a given target
search.... you'll be searching many tens or hundreds of thousands of
stars per bin, and be right back in the same sort of memory trouble
you had originally.

| should emphasize that this code does *not* guarantee that the
closest match itself is returned, only making the guarantee that *if*
the closest match is within 1/2 of the bin size, then it is correctly
returned. For this problem, this sets a minimum bin size: 2 * the max
search radius. You can of course go to larger bin sizes (and you may

Page 8 of 10 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

want to if your stars are sprinkled very sparsely over the grid, or

you require a very precise match, such that the histogram could grow
excessively large). If you go smaller you risk missing the correct
star.

: Match stars in one list to another, within some tolerance.
; Pre-bin into a 2D histogram, and use DUAL HISTOGRAM matching to select

n1=1000000 ;number of stars
x1=randomu(sd,n1) ;points to find matches near
yl=randomu(sd,nl)

n2=nl
x2=randomu(sd,n2) ;points to search in
y2=randomu(sd,n2)

t1=systime(1)

max_r=.0005 :maximum allowed radius for a match
bs=2*max_r ;this is the smallest binsize allowed
h=hist_nd([1#x2,1#y2],bs,MIN=0,MAX=1,REVERSE_INDICES=ri)
bs=bs[0]

d=size(h,/DIMENSIONS)

;; Bin location of X1,Y1 in the X2,Y2 grid
xoff=x1/bs & yoff=yl/bs

xbin=floor(xoff) & ybin=floor(yoff)

bin=(xbin + d[0]*ybin)<(d[0]*d[1]-1L) ;The bin it's in

;;» We must search 4 bins worth for closest match, depending on
;; location within bin (towards any of the 4 quadrants).
xoff=1-2*((xoff-xbin) It 0.5) ;add bin left or right
yoff=1-2*((yoff-ybin) It 0.5) ;add bin down or up

min_pos=make_array(nl,VALUE=-1L)
min_dist=fltarr(n1,/NOZERO)

for i=0,1 do begin ;; Loop over 4 bins in the correct quadrant direction
for j=0,1 do begin
b=0L>(bin+i*xoff+j*yoff*d[0])<(d[0]*d[1]-1) ;current bins (offset)

;; Dual HISTOGRAM method, loop by repeat count in bins
h2=histogram(h[b],MIN=1,REVERSE_INDICES=ri2)

Page 9 of 10 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;; Process all bins with the same number of repeats >= 1
for k=0L,n_elements(h2)-1 do begin
if h2[k] eq 0 then continue
these_bins=ri2[ri2[K]:ri2[k+1]-1] ;the points with k+1 repeats in bin

if kK eq O then begin ; single point (n)
these_points=ri[ri[b[these_bins]]]
endif else begin ; range over k+1 points, (n x k+1)
these_points=ri[ri[rebin(b[these_bins],h2[k],k+1,/SAMPLE)]+ $
rebin(lindgen(1,k+1),h2[k],k+1,/SAMPLE)]
these_bins=rebin(temporary(these_bins),h2[k],k+1,/SAMPLE)
endelse

dist=(x2[these_points]-x1[these_bins])"2 + $
(y2[these_points]-yl[these_bins])"2

if k gt 0 then begin ;multiple point in bin: find closest
dist=min(dist, DIMENSION=2,p)
these_points=these_points[p] ;index of closest point in bin
these_bins=ri2[ri2[K]:ri2[k+1]-1] ;original bin list

endif

;; See if a minimum is already set
set=where(min_pos[these_bins] ge 0, nset, $
COMPLEMENT=unset, NCOMPLEMENT=nunset)

if nset gt O then begin
;; Only update those where the new distance is less
closer=where(dist[set] It min_dist[these_bins[set]], cnt)
if cnt gt O then begin
set=set[closer]
min_pos[these_bins[set]]=these_points[set]
min_dist[these_bins[set]]=dist[set]
endif
endif

if nunset gt 0 then begin ;; Nothing set, closest by default
min_pos[these_bins[unset]]=these_points[unset]
min_dist[these_bins[unset]]=dist[unset]
endif
endfor
endfor
endfor

print,systime(1)-t1

Page 10 of 10 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

