Subject: Re: Randomize array order
Posted by Vince Hradil on Wed, 25 Jul 2007 19:59:14 GMT

View Forum Message <> Reply to Message

On Jul 25, 2:17 pm, Conor <cmanc...@gmail.com> wrote:
Hi everyone!

Anyone know an efficient way to randomize an array (I have a
sorted array that | want unsorted). Initially, | tried something like
this:

array = findgen(1000000)
unsort = array[sort(randomu(seed,1000000))]

>
>
>
>
>
>
>
>
>
> |t works, but sorting on a million elements is rather slow. Anyone
> know a faster way?

Takes about 0.87 seconds on my machine? s this too long?

Of course, if you want "with replacement” you could do:
unsort = array[long(1000000*randomu(seed,1000000))]

But you probably want a permutation, right? That'll be more difficult.

Subject: Re: Randomize array order
Posted by Conor on Thu, 26 Jul 2007 12:24:55 GMT

View Forum Message <> Reply to Message

On Jul 25, 3:59 pm, hradilv <hrad...@yahoo.com> wrote:

> On Jul 25, 2:17 pm, Conor <cmanc...@gmail.com> wrote:

>

>> Hi everyone!

>

>> Anyone know an efficient way to randomize an array (I have a
>> sorted array that | want unsorted). Initially, | tried something like
>> this:

>

>> array = findgen(1000000)

>> unsort = array[sort(randomu(seed,1000000))]

>> |t works, but sorting on a million elements is rather slow. Anyone
>> know a faster way?

Takes about 0.87 seconds on my machine? s this too long?

Of course, if you want "with replacement” you could do:
unsort = array[long(1000000*randomu(seed,1000000))]

Page 1 of 35 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3339
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=55028#msg_55028
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55028
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5992
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=55025#msg_55025
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55025
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> But you probably want a permutation, right? That'll be more difficult.

It takes about 3 seconds on my machine (really crappy machine). The
whole program takes about 6 seconds, so about half the program
execution comes from the one sort statement. This is going to execute
somewhere between 1000 and 10,000 times, so losing three seconds will
save me between 50 minutes and 8 hours. Yeah, | need a permutation.
Losing or repeating elements would be bad. It's always got to be the
hard way, doesn't it :)

Subject: Re: Randomize array order
Posted by Conor on Thu, 26 Jul 2007 12:28:46 GMT

View Forum Message <> Reply to Message

On Jul 25, 3:59 pm, hradilv <hrad...@yahoo.com> wrote:

> On Jul 25, 2:17 pm, Conor <cmanc...@gmail.com> wrote:

>

>> Hi everyone!

>

>> Anyone know an efficient way to randomize an array (I have a
>> sorted array that | want unsorted). Initially, | tried something like
>> this:

>

>> array = findgen(1000000)

>> unsort = array[sort(randomu(seed,1000000))]

>

>> |t works, but sorting on a million elements is rather slow. Anyone
>> know a faster way?

Z Takes about 0.87 seconds on my machine? Is this too long?

z Of course, if you want "with replacement” you could do:

> unsort = array[long(1000000*randomu(seed,1000000))]

i But you probably want a permutation, right? That'll be more difficult.
You know, it's a shame that sort and histogram don't make use of the

thread pool. If there were any algorithms that need to be multi-
threaded, those would be it. Oh well :(

Subject: Re: Randomize array order
Posted by mattf on Thu, 26 Jul 2007 12:50:25 GMT

View Forum Message <> Reply to Message

Page 2 of 35 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5992
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=55024#msg_55024
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55024
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5960
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=55023#msg_55023
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55023
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

On Jul 25, 3:17 pm, Conor <cmanc...@gmail.com> wrote:

> Hi everyone!

>

> Anyone know an efficient way to randomize an array (I have a
> sorted array that | want unsorted). Initially, | tried something like
> this:

>

> array = findgen(1000000)

> unsort = array[sort(randomu(seed,1000000))]

>

> |t works, but sorting on a million elements is rather slow. Anyone
> know a faster way?

| think this is one of those vectorization cases where you have a
trade-off between processor time and memory-- the one 'obvious' faster
way that occurs to me is to pre-compute a sequence of a few billion
random integers-- and then just select sub-sequences as needed. It's
possible that there's some intermediate strategy that's not quite so
extravagantly wasteful of memory.

Subject: Re: Randomize array order
Posted by Brian Larsen on Thu, 26 Jul 2007 13:04:19 GMT

View Forum Message <> Reply to Message

for the without replacement see http://www.dfanning.com/code_tips/randomindex.htmi
| have written a resample with and without replacement routine based
on this and its works fine.

Cheers,

Brian

Brian Larsen
Boston University
Center for Space Physics

Subject: Re: Randomize array order
Posted by Brian Larsen on Thu, 26 Jul 2007 13:06:21 GMT

View Forum Message <> Reply to Message

for the without replacement see http://www.dfanning.com/code_tips/randomindex.html
| have written a resample with and without replacement routine based
on this and its works fine.

Page 3 of 35 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5775
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=55022#msg_55022
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55022
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5775
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=55021#msg_55021
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55021
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Cheers,

Brian

Brian Larsen
Boston University
Center for Space Physics

Subject: Re: Randomize array order
Posted by Allan Whiteford on Thu, 26 Jul 2007 13:30:00 GMT

View Forum Message <> Reply to Message

Conor wrote:
Hi everyone!

Anyone know an efficient way to randomize an array (I have a
sorted array that | want unsorted). Initially, | tried something like
this:

array = findgen(1000000)
unsort = array[sort(randomu(seed,1000000))]

>
>
>
>
>
>
>
>
>
> |t works, but sorting on a million elements is rather slow. Anyone
> know a faster way?

>

Conor,
Is it a million elements you want to do?
The following scales better:

pro shuffle,in
b=long(n_elements(in)*randomu(seed,n_elements(in)))
for i=01,n_elements(in)-1 do begin
tmp=in[i]
in[i]=in[b[i]]
in[b[i]]=tmp
end
end

but on my machine, a million elements is around about where it starts to
become as efficient as yours. For 10 million elements the above is a bit
(17.05 seconds vs 12.92 seconds) but for 1 million elements they both
come in at around 1.2 seconds (1.15 seconds vs 1.26 seconds). The above
will scale as pretty much O(n) since it doesn't do any sorting but it

Page 4 of 35 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5781
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=55020#msg_55020
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55020
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

takes a hit in the practical implementation because of the loop in
IDL-space. Your suggestion will scale worse than O(n) but it seems the
overlap in the two methods is exactly where you want to work.

Maybe my loop can be made more efficient in practical terms but | don't
think this is any better algorithm in terms of scaling (hard to imagine
anything that could go faster than O(n) to randomise n things).
Probably not helpful but | thought it was interesting that the

cross-over is exactly where you want to work. But, maybe | should get
out more if | think that's especially interesting.

Thanks,

Allan

Subject: Re: Randomize array order
Posted by Conor on Thu, 26 Jul 2007 13:40:56 GMT

View Forum Message <> Reply to Message

On Jul 26, 9:30 am, Allan Whiteford
<allan.rem...@phys.remove.strath.ac.remove.uk> wrote:

> Conor wrote:

>> Hi everyone!

>

>> Anyone know an efficient way to randomize an array (I have a
>> sorted array that | want unsorted). Initially, I tried something like
>> this:

>

>> array = findgen(1000000)

>> unsort = array[sort(randomu(seed,1000000))]

>
>> |t works, but sorting on a million elements is rather slow. Anyone
>> know a faster way?

>

> Conor,

>

> [s it a million elements you want to do?

>

> The following scales better:

>

> pro shuffle,in

> b=long(n_elements(in)*randomu(seed,n_elements(in)))

> for i=0l,n_elements(in)-1 do begin

> tmp=in[i]

> in[i]=in[b[i]]

> in[b[i]]=tmp

Page 5 of 35 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5992
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=55019#msg_55019
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55019
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

end
end

but on my machine, a million elements is around about where it starts to
become as efficient as yours. For 10 million elements the above is a bit
(17.05 seconds vs 12.92 seconds) but for 1 million elements they both
come in at around 1.2 seconds (1.15 seconds vs 1.26 seconds). The above
will scale as pretty much O(n) since it doesn't do any sorting but it

takes a hit in the practical implementation because of the loop in
IDL-space. Your suggestion will scale worse than O(n) but it seems the
overlap in the two methods is exactly where you want to work.

Maybe my loop can be made more efficient in practical terms but | don't
think this is any better algorithm in terms of scaling (hard to imagine
anything that could go faster than O(n) to randomise n things).

Probably not helpful but | thought it was interesting that the
cross-over is exactly where you want to work. But, maybe | should get
out more if | think that's especially interesting.

Thanks,

VVVVVVVVVVVVVVVVVYVYVYVYVYVYV

Allan

Thanks for the suggestions guys! I'll have to play around and see
what works best.

Subject: Re: Randomize array order
Posted by Vince Hradil on Thu, 26 Jul 2007 14:58:19 GMT

View Forum Message <> Reply to Message

On Jul 26, 8:40 am, Conor <cmanc...@gmail.com> wrote:

> On Jul 26, 9:30 am, Allan Whiteford

>

>

>

> <allan.rem...@phys.remove.strath.ac.remove.uk> wrote:

>> Conor wrote:

>>> Hi everyone!

>

>>> Anyone know an efficient way to randomize an array (I have a
>>> sorted array that | want unsorted). Initially, | tried something like
>>> this:

>

>>> array = findgen(1000000)

>>> unsort = array[sort(randomu(seed,1000000))]

>

Page 6 of 35 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3339
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=55017#msg_55017
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55017
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>> |t works, but sorting on a million elements is rather slow. Anyone

>>> know a faster way?

>

>> Conor,

>

>> |s it a million elements you want to do?

>

>> The following scales better:

>

>> pro shuffle,in

>> b=long(n_elements(in)*randomu(seed,n_elements(in)))

>> for i=0l,n_elements(in)-1 do begin

>> tmp=in[i]

>> in[i]=in[b[i]]

>> in[b[i]]=tmp

>> end

>> end

>

>> put on my machine, a million elements is around about where it starts to
>> pecome as efficient as yours. For 10 million elements the above is a bit
>> (17.05 seconds vs 12.92 seconds) but for 1 million elements they both
>> come in at around 1.2 seconds (1.15 seconds vs 1.26 seconds). The above
>> will scale as pretty much O(n) since it doesn't do any sorting but it

>> takes a hit in the practical implementation because of the loop in

>> |DL-space. Your suggestion will scale worse than O(n) but it seems the
>> overlap in the two methods is exactly where you want to work.

>

>> Maybe my loop can be made more efficient in practical terms but | don't
>> think this is any better algorithm in terms of scaling (hard to imagine

>> anything that could go faster than O(n) to randomise n things).

>

>> Probably not helpful but I thought it was interesting that the

>> cross-over is exactly where you want to work. But, maybe | should get
>> out more if | think that's especially interesting.

>

>> Thanks,

>

>> Allan

>

> Thanks for the suggestions guys! I'll have to play around and see

> what works best.

Here's a table of results from my machine. All times are in seconds.
PC single processor, WinXP, IDL6.4

i Niter Rand-meth Loop-meth
0O 100000 0.0929999 0.110000
1 166810 0.0779998 0.0940001

Page 7 of 35 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

2 278256 0.140000 0.157000
3 464158 0.297000 0.297000
4 774263 0.578000 0.562000
5 1291549 1.09400 0.890000
6 2154435 2.06300 1.48400
7 3593812 3.84400 2.56300
8 5994841 7.09400 4.31300
9 10000000 13.0470 7.29800

Here's my code:

function runsort, array

na = n_elements(array)

return, array[sort(randomu(seed,na))]
end

function lunsort, array
na = n_elements(array)
rarray = array

b = long(na*randomu(seed,na))
for i=0l, na-1 do begin
tmp = rarrayfi]
rarray[i] = rarray[bl[i]]
rarray[b[i]] = tmp
endfor

return, rarray
end

pro test_unsort, randi=randi, loopi=loopi, nel=nel

n =10l
nlo = 5l
nhi = 7I

fndx = findgen(n)/float(n-1)
nel = long(10”~((nhi-nlo)*fndx + nlo))

randi = fltarr(n)

loopi = fltarr(n)

for i=0l, n-1 do begin
array = findgen(nell[i])
t = systime(1)
unsort = runsort(array)
randi[i] = systime(1)-t

t = systime(1)
unsort = lunsort(array)

Page 8 of 35 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

loopi[i] = systime(1)-t

print, i, nel[i], randi[i], loopili]
endfor

return
end

Subject: Re: Randomize array order
Posted by Vince Hradil on Thu, 26 Jul 2007 15:13:36 GMT

View Forum Message <> Reply to Message

On Jul 26, 9:58 am, hradilv <hrad...@yahoo.com> wrote:

> On Jul 26, 8:40 am, Conor <cmanc...@gmail.com> wrote:

>

>

>

>> On Jul 26, 9:30 am, Allan Whiteford

>

>> <allan.rem...@phys.remove.strath.ac.remove.uk> wrote:

>>> Conor wrote:

>>>> Hi everyone!

>

>>>> Anyone know an efficient way to randomize an array (I have a
>>>> sorted array that | want unsorted). Initially, | tried something like

>>>> this:

>

>>>> array = findgen(1000000)

>>>> unsort = array[sort(randomu(seed,1000000))]

>

>>>> |t works, but sorting on a million elements is rather slow. Anyone
>>>> know a faster way?

>

>>> Conor,

>

>>> |s it a million elements you want to do?
>

>>> The following scales better:

>

>>> pro shuffle,in

>>> b=long(n_elements(in)*randomu(seed,n_elements(in)))
>>> for i=0l,n_elements(in)-1 do begin
>>> tmp=in[i]

>>> in[i]=in[b[i]]

>>> in[b[i]]=tmp

>>> end

>>> end

Page 9 of 35 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3339
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=55015#msg_55015
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55015
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>>> but on my machine, a million elements is around about where it starts to
>>> become as efficient as yours. For 10 million elements the above is a bit
>>> (17.05 seconds vs 12.92 seconds) but for 1 million elements they both
>>> come in at around 1.2 seconds (1.15 seconds vs 1.26 seconds). The above
>>> will scale as pretty much O(n) since it doesn't do any sorting but it

>>> takes a hit in the practical implementation because of the loop in

>>> |DL-space. Your suggestion will scale worse than O(n) but it seems the
>>> overlap in the two methods is exactly where you want to work.

>

>>> Maybe my loop can be made more efficient in practical terms but | don't
>>> think this is any better algorithm in terms of scaling (hard to imagine
>>> anything that could go faster than O(n) to randomise n things).

>

>>> Probably not helpful but | thought it was interesting that the

>>> cross-over is exactly where you want to work. But, maybe | should get
>>> out more if | think that's especially interesting.

>

>>> Thanks,

>

>>> Allan

>

>> Thanks for the suggestions guys! I'll have to play around and see

>> what works best.

Here's a table of results from my machine. All times are in seconds.
PC single processor, WinXP, IDL6.4

i Niter Rand-meth Loop-meth
0O 100000 0.0929999 0.110000
1 166810 0.0779998 0.0940001
2 278256 0.140000 0.157000
3 464158 0.297000 0.297000
4 774263 0.578000 0.562000
5 1291549 1.09400 0.890000
6 2154435 2.06300 1.48400
7 3593812 3.84400 2.56300
8 5994841 7.09400 4.31300
9 10000000 13.0470 7.29800

VVVVVVVVYVYVVYVYVYVYV

More details: Single Intel 1.86GHz, 2Gb RAM

Other machine: Sun Blade 2500 - Solaris 9, IDL 6.3 - Dual processor,
2Gb RAM

i Niter Rand-meth Loop-meth
0 100000 0.112775 0.218330
1 166810 0.194601 0.370555

Page 10 of 35 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

2 278256 0.369679 0.621675
3 464158 0.700207 1.05355
4 774263 1.32646 1.74441

5 1291549 2.42519 2.95356
6 2154435 4.38822 4.91093
7 3593812 8.63800 8.35843
8 5994841 15.6409 13.9243
9 10000000 28.9150 23.6173

Interesting, there's a crossover at ~ 3,000,000 where the loop method
starts to win.

Subject: Re: Randomize array order
Posted by Allan Whiteford on Thu, 26 Jul 2007 15:49:13 GMT

View Forum Message <> Reply to Message

hradilv wrote:

> On Jul 26, 9:58 am, hradilv <hrad...@yahoo.com> wrote:
>

>> On Jul 26, 8:40 am, Conor <cmanc...@gmail.com> wrote:
>>

>>

>>

>>

>>> On Jul 26, 9:30 am, Allan Whiteford

>>

>>> <allan.rem...@phys.remove.strath.ac.remove.uk> wrote:
>>>

>>>> Conor wrote:

>>>>

>>>> >Hi everyone!

>>

>>>>> Anyone know an efficient way to randomize an array (I have a
>>>> >gorted array that | want unsorted). Initially, | tried something like
>>>> >this:

>>

>>>> >array = findgen(1000000)

>>>> >unsort = array[sort(randomu(seed,1000000))]

>>

>>>> >|t works, but sorting on a million elements is rather slow. Anyone
>>>> >know a faster way?

>>

>>>> Conor,

>>

>>>> |s it a million elements you want to do?

>>

>>>> The following scales better:

Page 11 of 35 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5781
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=55014#msg_55014
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55014
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>>>> pro shuffle,in

>>>> b=long(n_elements(in)*randomu(seed,n_elements(in)))
>>>> for i=0l,n_elements(in)-1 do begin

>>>> tmp=in[i]

>>>> in[i]=in[bl[i]]

>>>> in[b[i]]=tmp

>>>> end

>>>> end

>>

>>>> put on my machine, a million elements is around about where it starts to
>>>> pecome as efficient as yours. For 10 million elements the above is a bit
>>>> (17.05 seconds vs 12.92 seconds) but for 1 million elements they both
>>>> come in at around 1.2 seconds (1.15 seconds vs 1.26 seconds). The above
>>>> will scale as pretty much O(n) since it doesn't do any sorting but it

>>>> takes a hit in the practical implementation because of the loop in

>>>> |[DL-space. Your suggestion will scale worse than O(n) but it seems the
>>>> overlap in the two methods is exactly where you want to work.

>>

>>>> Maybe my loop can be made more efficient in practical terms but | don't
>>>> think this is any better algorithm in terms of scaling (hard to imagine
>>>> anything that could go faster than O(n) to randomise n things).

>>

>>>> Probably not helpful but | thought it was interesting that the

>>>> cross-over is exactly where you want to work. But, maybe | should get
>>>> out more if | think that's especially interesting.

>>

>>>> Thanks,

>>

>>>> Allan

>>

>>> Thanks for the suggestions guys! I'll have to play around and see

>>> what works best.

>>

>> Here's a table of results from my machine. All times are in seconds.

>> PC single processor, WinXP, IDL6.4

>>
>>

5994841 7.09400 4.31300
10000000 13.0470 7.29800

>>
>> i Niter Rand-meth Loop-meth
>> 0 100000 0.0929999 0.110000
>> 1 166810 0.0779998 0.0940001
>> 2 278256 0.140000 0.157000
>> 3 464158 0.297000 0.297000
>> 4 774263 0.578000 0.562000
>> 5 1291549 1.09400 0.890000
>> 6 2154435 2.06300 1.48400
>> 7 3593812 3.84400 2.56300

8

9

Page 12 of 35 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Other machine: Sun Blade 2500
2Gb RAM

Rand-meth
0.112775
0.194601
0.369679
0.700207

1.32646
2.42519
4.38822
8.63800
15.6409

28.9150

i Niter
0O 100000
1 166810
2 278256
3 464158
4 774263
5 1291549
6 2154435
7 3593812
8 5994841
9 10000000

starts to win.

VVVVVVVVVVVVVVVVVYVYVYVYVYV

Here's what | get on a dual core 3G
Linux (FC4) using IDL6.2:

Rand-meth
0.0818000
0.140054
0.255531
0.462941
0.835279
1.53649
3.08281
5.27431
10.6316
17.4706

Niter
100000
166810
278256
464158
774263
1291549
2154435
3593812
5994841

[
0
1
2
3
4
5
6
7
8
9 10000000

More details: Single Intel 1.86GHz, 2Gb RAM

- Solaris 9, IDL 6.3 - Dual processor,

Loop-meth
0.218330
0.370555
0.621675
1.05355
1.74441
2.95356
4.91093
8.35843
13.9243
23.6173

Interesting, there's a crossover at ~ 3,000,000 where the loop method

Hz Pentium 4 with 2GB of RAM running

Loop-meth
0.120713
0.205111
0.340111
0.572567
0.973762
1.71803
2.83829
4.71084
7.85549
13.6622

kind of annoying that your 1.8GHz machine running windows goes faster
than my 3GHz running Linux. Not as bad as how slow the Sun goes though.

Incidentally, previously | was quotin

g raw CPU times rather than the

wall clock times which your routine prints out.

Thanks,

Allan

Page 13 of 35 ---- Cenerated from

conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: Randomize array order
Posted by Conor on Thu, 26 Jul 2007 16:22:27 GMT

View Forum Message <> Reply to Message

On Jul 26, 11:49 am, Allan Whiteford
<allan.rem...@phys.remove.strath.ac.remove.uk> wrote:

> hradilv wrote:

>> On Jul 26, 9:58 am, hradilv <hrad...@yahoo.com> wrote:

>

>>> On Jul 26, 8:40 am, Conor <cmanc...@gmail.com> wrote:
>

>>>> On Jul 26, 9:30 am, Allan Whiteford

>

>>>> <allan.rem...@phys.remove.strath.ac.remove.uk> wrote:
>

>>>> >Conor wrote:

>

>>>> >>Hj everyone!

>

>>>>>> Anyone know an efficient way to randomize an array (I have a
>>>> >>sorted array that | want unsorted). Initially, | tried something like
>>>> >>this:

>

>>>> >>grray = findgen(1000000)

>>>> >>unsort = array[sort(randomu(seed,1000000))]

>

>>>> >>|t works, but sorting on a million elements is rather slow. Anyone
>>>> >>know a faster way?

>

>>>> >Conor,

>

>>>> >|s it a million elements you want to do?

>

>>>> >The following scales better:

>

>>>> >pro shuffle,in

>>>> > b=long(n_elements(in)*randomu(seed,n_elements(in)))

>>>> > for i=0l,n_elements(in)-1 do begin

>>>> > tmp=in[i]

>>>> > in[i]l=in[b[i]]

>>>> > in[b[i]]=tmp

>>>> > end

>>>> >end

>

>>>> >put on my machine, a million elements is around about where it starts to
>>>> >pecome as efficient as yours. For 10 million elements the above is a bit
>>>> >(17.05 seconds vs 12.92 seconds) but for 1 million elements they both
>>>> >come in at around 1.2 seconds (1.15 seconds vs 1.26 seconds). The above
>>>> >will scale as pretty much O(n) since it doesn't do any sorting but it

Page 14 of 35 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5992
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=55013#msg_55013
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55013
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>> >takes a hit in the practical implementation because of the loop in
>>>> >|DL-space. Your suggestion will scale worse than O(n) but it seems the
>>>> >overlap in the two methods is exactly where you want to work.

>

>>>> >Maybe my loop can be made more efficient in practical terms but | don't
>>>> >think this is any better algorithm in terms of scaling (hard to imagine
>>>> >anything that could go faster than O(n) to randomise n things).

>

>>>> >Probably not helpful but | thought it was interesting that the

>>>> >cross-over is exactly where you want to work. But, maybe | should get
>>>> >out more if | think that's especially interesting.

>

>>>> >Thanks,

>

>>>> >Allan

>

>>>> Thanks for the suggestions guys! I'll have to play around and see
>>>> what works best.

>

>>> Here's a table of results from my machine. All times are in seconds.

>>> PC single processor, WinXP, IDL6.4

>
>>> [Niter Rand-meth Loop-meth
>>> 0 100000 0.0929999 0.110000
>>> 1 166810 0.0779998 0.0940001
>>> 2 278256 0.140000 0.157000
>>> 3 464158 0.297000 0.297000
>>> 4 774263 0.578000 0.562000
>>> 5 1291549 1.09400 0.890000
>>> 6 2154435 2.06300 1.48400
>>> 7 3593812 3.84400 2.56300
>>> 8 5994841 7.09400 4.31300
>>> 9 10000000 13.0470 7.29800
>

>> More details: Single Intel 1.86GHz, 2Gb RAM
>

>> QOther machine: Sun Blade 2500 - Solaris 9, IDL 6.3 - Dual processor,
>> 2Gb RAM
>

>>

>>

i Niter Rand-meth Loop-meth
0 100000 0.112775 0.218330
>> 1 166810 0.194601 0.370555
>> 2 278256 0.369679 0.621675
>> 3 464158 0.700207 1.05355
>> 4 774263 1.32646 1.74441
>> 5 1291549 2.42519 2.95356
>> 6 2154435 4.38822 4.91093
>> 7 3593812 8.63800 8.35843

Page 15 of 35 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> 8 5994841 15.6409 13.9243

>> 9 10000000 28.9150 23.6173

>

>> |nteresting, there's a crossover at ~ 3,000,000 where the loop method
>> starts to win.

Here's what | get on a dual core 3GHz Pentium 4 with 2GB of RAM running
Linux (FC4) using IDL6.2:

[Niter Rand-meth Loop-meth
0O 100000 0.0818000 0.120713
1 166810 0.140054 0.205111
2 278256 0.255531 0.340111
3 464158 0.462941 0.572567
4 774263 0.835279 0.973762
5 1291549 1.53649 1.71803
6 2154435 3.08281 2.83829
7 3593812 5.27431 4.71084
8 5994841 10.6316 7.85549
9 10000000 17.4706 13.6622

kind of annoying that your 1.8GHz machine running windows goes faster
than my 3GHz running Linux. Not as bad as how slow the Sun goes though.

Incidentally, previously | was quoting raw CPU times rather than the
wall clock times which your routine prints out.

Thanks,

VVVVVVVVVVVVVVVVVVVVYVYVYVYVYV

Allan
Here's what | get running it on my super old computer:

0O 100000 0.231639 0.266472
1 166810 0.429814 0.450388
2 278256 0.768671 0.777250
3 464158 1.40014 1.29011

4 774263 2.55367 2.15114

5 1291549 4.66570 3.60980
6 2154435 8.48878 6.04430
7 3593812 15.3753 10.1437
8 5994841 29.2131 20.1072
9 10000000 52.2718 29.7969

Subject: Re: Randomize array order
Posted by David Streutker on Thu, 26 Jul 2007 16:57:31 GMT

Page 16 of 35 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5442
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

View Forum Message <> Reply to Message

How about a Knuth shuffle?
(Disclaimer: I'm not a statistician; | just found it on Wikipedia.)

function kunsort, array
na = n_elements(array)
random = randomu(seed,na) * (na - array - 1) + array
for i=0L,na-2 do array[i] = array[random([i]]
return, array
end

Added to Vince's code (last column):

0O 100000 0.0619998 0.0780001 0.0320001
1 166810 0.125000 0.125000 0.0780001
2 278256 0.282000 0.218000 0.141000

3 464158 0.547000 0.406000 0.235000

4 774263 1.07800 0.657000 0.390000

5 1291549 1.93700 1.09400 0.703000

6 2154435 3.51500 1.89100 1.20300

7 3593812 6.34400 3.11000 1.98400

8 5994841 115470 5.21800 3.36000

9 10000000 20.3750 8.67200 5.60900

Windows XP, dual 2.66 GHz, 3 GB RAM, IDL 6.3

Subject: Re: Randomize array order
Posted by Vince Hradil on Thu, 26 Jul 2007 20:32:39 GMT

View Forum Message <> Reply to Message

On Jul 26, 11:57 am, David Streutker <dstreut...@gmail.com> wrote:
> How about a Knuth shuffle?
>

(Disclaimer: I'm not a statistician; | just found it on Wikipedia.)

>

>

> function kunsort, array
> na=n_elements(array)
> random = randomu(seed,na) * (na - array - 1) + array
> for i=0L,na-2 do array[i] = array[random([i]]
> return, array

> end

>

> Added to Vince's code (last column):

>
>

0O 100000 0.0619998 0.0780001 0.0320001

Page 17 of 35 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=55012#msg_55012
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55012
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3339
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=55011#msg_55011
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55011
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

1 166810 0.125000 0.125000 0.0780001
2 278256 0.282000 0.218000 0.141000
3 464158 0.547000 0.406000 0.235000
4 774263 1.07800 0.657000 0.390000
5 1291549 193700 1.09400 0.703000
6 2154435 3.51500 1.89100 1.20300

7 3593812 6.34400 3.11000 1.98400

8 5994841 11.5470 5.21800 3.36000

9 10000000 20.3750 8.67200 5.60900

VVVVYVYVVYVYVYV

> Windows XP, dual 2.66 GHz, 3 GB RAM, IDL 6.3

I'm not sure, but | think that will give you "with replacement”.

Subject: Re: Randomize array order
Posted by David Streutker on Thu, 26 Jul 2007 21:27:33 GMT

View Forum Message <> Reply to Message

On Jul 26, 2:32 pm, hradilv <hrad...@yahoo.com> wrote:

> On Jul 26, 11:57 am, David Streutker <dstreut...@gmail.com> wrote:
>

>

>

>> How about a Knuth shuffle?

>

>> (Disclaimer: I'm not a statistician; | just found it on Wikipedia.)

>

>> function kunsort, array

>> na=n_elements(array)

>> random = randomu(seed,na) * (na - array - 1) + array

>> for i=0L,na-2 do array[i] = array[random][i]]

>> return, array

>> end

>
>
>
>>
>>

\%

Added to Vince's code (last column):

0 100000 0.0619998 0.0780001 0.0320001

1 166810 0.125000 0.125000 0.0780001
>> 2 278256 0.282000 0.218000 0.141000
>> 3 464158 0.547000 0.406000 0.235000
>> 4 774263 1.07800 0.657000 0.390000
>> 5 1291549 1.93700 1.09400 0.703000
>> 6 2154435 3.51500 1.89100 1.20300
>> 7 3593812 6.34400 3.11000 1.98400
>> 8 5994841 11.5470 5.21800 3.36000
>> 9 10000000 20.3750 8.67200 5.60900
>

Page 18 of 35 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5442
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=55009#msg_55009
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55009
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> Windows XP, dual 2.66 GHz, 3 GB RAM, IDL 6.3
>

> I'm not sure, but | think that will give you "with replacement”.

You're right, | wasn't swapping. Corrected, and in the form of
Allan's method:

function kunsort, array
na = n_elements(array)
rarray = array

b = randomu(seed,na-1) * (na - lindgen(na-1) - 1) + lindgen(na-1)
for i=0L,na-2 do begin

tmp = rarray[i]

rarray/[i] = rarray[b[i]]

rarray[b[i]] = tmp
endfor

return, rarray
end

With the change, it's slightly slower than Allan's. However, for what
it's worth, there are claims this is a less biased method. (Again, |
am no expert. But the recent poker craze seems to have revived
interest in the probabilities of shuffling.)

Subject: Re: Randomize array order
Posted by Allan Whiteford on Fri, 27 Jul 2007 09:33:30 GMT

View Forum Message <> Reply to Message

David Streutker wrote:

> On Jul 26, 2:32 pm, hradilv <hrad...@yahoo.com> wrote:

>

>> On Jul 26, 11:57 am, David Streutker <dstreut...@gmail.com> wrote:
>>

>>

>>

>>

>>> How about a Knuth shuffle?

>>

>>> (Disclaimer: I'm not a statistician; | just found it on Wikipedia.)
>>

>>> function kunsort, array

>>> na = n_elements(array)

>>> random =randomu(seed,na) * (na - array - 1) + array

>>> for i=0L,na-2 do array[i] = array[random[i]]

>>> return, array

Page 19 of 35 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5781
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=55005#msg_55005
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55005
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>> end

>>
>>> Added to Vince's code (last column):

>>

>>> 0 100000 0.0619998 0.0780001 0.0320001
>>> 1 166810 0.125000 0.125000 0.0780001
>>> 2 278256 0.282000 0.218000 0.141000
>>> 3 464158 0.547000 0.406000 0.235000
>>> 4 774263 1.07800 0.657000 0.390000
>>> 5 1291549 1.93700 1.09400 0.703000
>>> 6 2154435 3.51500 1.89100 1.20300
>>> 7 3593812 6.34400 3.11000 1.98400
>>> 8 5994841 11.5470 5.21800 3.36000
>>> 9 10000000 20.3750 8.67200 5.60900
>>

>>> Windows XP, dual 2.66 GHz, 3 GB RAM, IDL 6.3

>>

>> |'m not sure, but | think that will give you "with replacement”.

You're right, | wasn't swapping. Corrected, and in the form of
Allan's method:

function kunsort, array
na = n_elements(array)
rarray = array

b = randomu(seed,na-1) * (na - lindgen(na-1) - 1) + lindgen(na-1)
for i=0L,na-2 do begin

tmp = rarray[i]

rarray[i] = rarray[bli]]

rarray[b[i]] = tmp
endfor

return, rarray
end

With the change, it's slightly slower than Allan's. However, for what
it's worth, there are claims this is a less biased method. (Again, |
am no expert. But the recent poker craze seems to have revived
interest in the probabilities of shuffling.)

VVVVVVVVVVVVVVVVVYVVYVYVYVYVYV

Yours is doing a bit more than mine was in that it's creating a copy of
the original data rather than in-place swapping so that would make yours
a bit slower (but probably more useful). You can probably also get a
speed up by converting "b" to a long at creation time rather than
implicitly ever time you use it.

Page 20 of 35 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Looking over what a Knuth Shuffle is supposed to to, it seems that
you're only supposed to swap with an element you've not already passed
over; my code didn't do this but yours does. | guess Knuth is smarter
than me :). Although, | tend to not believe anything which appears on
Wikipedia.

However, in your code, it looks like the "na-1" in the creation of "b"
and the "na-2" in the loop will mean that the last element of the array
never gets swapped.

Thanks,

Allan

Subject: Re: Randomize array order
Posted by Allan Whiteford on Fri, 27 Jul 2007 12:03:34 GMT

View Forum Message <> Reply to Message

Conor wrote:
Hi everyone!

Anyone know an efficient way to randomize an array (I have a
sorted array that | want unsorted). Initially, | tried something like
this:
unsort = array[sort(randomu(seed,1000000))]

It works, but sorting on a million elements is rather slow. Anyone

>

>

>

>

>

>

> array = findgen(1000000)
>

>

>

> know a faster way?
>

Slightly different point and probably a bit academic:

If you have a million elements then you have 1000000! (i.e. one million
factorial) different ways to re-order the data. However, your seed is a
4 byte integer which can only take 2”32 different values.

Some messing about suggests that:

1000000! =~ 1075568636

which means there are ~ 10"5568636 different ways to re-arrange your
elements as opposed to the 4 x 10"9 values your seed can take.

Thus, using any of the algorithms suggested you're only going to sample

Page 21 of 35 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5781
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=55003#msg_55003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

10"-5568625 %

of the possible values. This is a really small number. It means that no
matter how hard you try and how many times you do things you'll never be
able to access anything but a tiny number of the possibilities without

doing multiple shufflings - | think it's something like 618737

sub-shufflings (i.e. 5568636 / 9) but that could be wrong. However, that
requires producing 618737 seeds per major-shuffle (and you can't use a
generator based on a 4 byte seed to produce these seeds).

But, since you're only going to be running the code 1000-10,000 times
(which is much smaller than 4e9) | guess everything will be ok. | don't

know if anyone has studied possible correlations of results as a

function of the very small number of seeds (compared to the data),

whatever random number generator is used and the shuffling method.
Presumably they have and presumably everything is ok. Does anyone know?

Thanks,

Allan

Subject: Re: Randomize array order
Posted by Paolo Grigis on Fri, 27 Jul 2007 13:59:08 GMT

View Forum Message <> Reply to Message

Allan Whiteford wrote:

> Conor wrote:

>> Hi everyone!

>>

>> Anyone know an efficient way to randomize an array (I have a
>> sorted array that | want unsorted). Initially, | tried something like
>> this:

>>

>> array = findgen(1000000)

>> unsort = array[sort(randomu(seed,1000000))]

>> |t works, but sorting on a million elements is rather slow. Anyone

>> know a faster way?

Slightly different point and probably a bit academic:

If you have a million elements then you have 1000000! (i.e. one million

factorial) different ways to re-order the data. However, your seed is a
4 byte integer which can only take 2*32 different values.

VVVVYVYVYV

Page 22 of 35 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4906
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=55001#msg_55001
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55001
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Some messing about suggests that:
1000000! =~ 1075568636

which means there are ~ 105568636 different ways to re-arrange your
elements as opposed to the 4 x 1079 values your seed can take.

Thus, using any of the algorithms suggested you're only going to sample
107-5568625 %

of the possible values. This is a really small number. It means that no
matter how hard you try and how many times you do things you'll never be
able to access anything but a tiny number of the possibilities without

doing multiple shufflings - | think it's something like 618737

sub-shufflings (i.e. 5568636 / 9) but that could be wrong. However, that
requires producing 618737 seeds per major-shuffle (and you can't use a
generator based on a 4 byte seed to produce these seeds).

But, since you're only going to be running the code 1000-10,000 times
(which is much smaller than 4e9)

VVVVVVVVVVVVVVYVVYVYVYVYVYV

| am by no means an expert, but | think that in general, common sense
suggests not to use more random numbers for one project than the cycle
length of the generator (that is, the length at which the numbers start

to repeat themselves). From the docs is hard to guess how long the cycle
is, but it can be at most 2*32 for a generator using long ints. So |
wouldn't suggest doing more than 2732/1d6 runs of the code, if one is
using 1d6 numbers per run.

If more random deviates are needed, it would be a good idea to use a
random generator with a longer cycle.

Ciao,
Paolo

| guess everything will be ok. | don't
know if anyone has studied possible correlations of results as a
function of the very small number of seeds (compared to the data),
whatever random number generator is used and the shuffling method.

Thanks,

V V V V

Allan

Presumably they have and presumably everything is ok. Does anyone know?

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: Randomize array order
Posted by David Streutker on Fri, 27 Jul 2007 14:54:55 GMT

View Forum Message <> Reply to Message

On Jul 27, 6:03 am, Allan Whiteford

<a
>

>>
>

>>
>>
>>
>

>>
>>

V V
V V

VVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYV

llan.rem...@phys.remove.strath.ac.remove.uk> wrote:
Conor wrote:
Hi everyone!

Anyone know an efficient way to randomize an array (I have a
sorted array that | want unsorted). Initially, | tried something like
this:

array = findgen(1000000)
unsort = array[sort(randomu(seed,1000000))]

It works, but sorting on a million elements is rather slow. Anyone
know a faster way?

Slightly different point and probably a bit academic:

If you have a million elements then you have 1000000! (i.e. one million
factorial) different ways to re-order the data. However, your seed is a
4 byte integer which can only take 2”32 different values.

Some messing about suggests that:
1000000! =~ 1075568636

which means there are ~ 10"5568636 different ways to re-arrange your
elements as opposed to the 4 x 10"9 values your seed can take.

Thus, using any of the algorithms suggested you're only going to sample
10"-5568625 %

of the possible values. This is a really small number. It means that no
matter how hard you try and how many times you do things you'll never be
able to access anything but a tiny number of the possibilities without

doing multiple shufflings - | think it's something like 618737

sub-shufflings (i.e. 5568636 / 9) but that could be wrong. However, that
requires producing 618737 seeds per major-shuffle (and you can't use a
generator based on a 4 byte seed to produce these seeds).

But, since you're only going to be running the code 1000-10,000 times
(which is much smaller than 4e9) | guess everything will be ok. | don't
know if anyone has studied possible correlations of results as a
function of the very small number of seeds (compared to the data),
whatever random number generator is used and the shuffling method.

Pag

e 24 of 35 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5442
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=55000#msg_55000
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55000
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> Presumably they have and presumably everything is ok. Does anyone know?
>

> Thanks,
>

> Allan

I'm not sure that | agree. Where in any of our algorithms are we

unable to access a (theoretically) possible outcome? As long as we

are able to randomly select any element of the array in each step, it

should work, right? (l.e., as long as the input array has fewer than

2732 elements.) In your analysis, shouldn't we be using (2*32)"n for

the maximum possible number of randomly generated combinations, where
n is the number of steps/elements?

Also, in the Knuth method, the final element may or may not be
swapped, depending on whether it is randomly selected for one of the
previous swaps.

-David

Subject: Re: Randomize array order
Posted by James Kuyper on Fri, 27 Jul 2007 16:05:27 GMT

View Forum Message <> Reply to Message

David Streutker wrote:
> On Jul 27, 6:03 am, Allan Whiteford

>> |f you have a million elements then you have 1000000! (i.e. one million
>> factorial) different ways to re-order the data. However, your seed is a
>> 4 byte integer which can only take 2732 different values.

>>
>> Some messing about suggests that:
>>

>> 1000000! =~ 1075568636

>>

>> which means there are ~ 10"5568636 different ways to re-arrange your
>> elements as opposed to the 4 x 10”9 values your seed can take.

>>

>> Thus, using any of the algorithms suggested you're only going to sample
>>

>> 107-5568625 %

>>

>> of the possible values. This is a really small number. It means that no

>> matter how hard you try and how many times you do things you'll never be
>> able to access anything but a tiny number of the possibilities without

>> doing multiple shufflings - I think it's something like 618737

>> sub-shufflings (i.e. 5568636 / 9) but that could be wrong. However, that

Page 25 of 35 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3483
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=54998#msg_54998
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=54998
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> requires producing 618737 seeds per major-shuffle (and you can't use a
>> generator based on a 4 byte seed to produce these seeds).

>> But, since you're only going to be running the code 1000-10,000 times

>> (which is much smaller than 4e9) | guess everything will be ok. | don't

>> know if anyone has studied possible correlations of results as a

>> function of the very small number of seeds (compared to the data),

>> whatever random number generator is used and the shuffling method.

>> Presumably they have and presumably everything is ok. Does anyone know?

>> Thanks,
>> Allan

>

> I'm not sure that | agree. Where in any of our algorithms are we

> unable to access a (theoretically) possible outcome? As long as we

> are able to randomly select any element of the array in each step, it

> should work, right? (l.e., as long as the input array has fewer than

> 2732 elements.) In your analysis, shouldn't we be using (2/32)"n for

> the maximum possible number of randomly generated combinations, where
> nis the number of steps/elements?

No, because the entire sequence of numbers is uniquely determined by
initial internal state of the generator. If you knew the algorithm

used, and the internal state, that's all the information you'd need to
predict, precisely, the entire sequence of numbers generated, no
matter how long that sequence was. If the internal state is stored in

a 32 bit integer, that means there's only 2732 possible different
sequences.

> From that fact, it can also be shown that every possible sequence must
start repeating, exactly, with a period that is less than 2"32. If one

of the possible sequences has starts repeating with a period T, then

at least T-1 of the other possible sequences generate that same repeat
cycle, with various shifts.

There's a reason why these things are called PSEUDO-random number
generators.

Subject: Re: Randomize array order
Posted by James Kuyper on Fri, 27 Jul 2007 16:29:49 GMT

View Forum Message <> Reply to Message

Allan Whiteford wrote:
> David Streutker wrote:

>> On Jul 26, 2:32 pm, hradilv <hrad...@yahoo.com> wrote:
>>

Page 26 of 35 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3483
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=54997#msg_54997
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=54997
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>> On Jul 26, 11:57 am, David Streutker <dstreut...@gmail.com> wrote:
>>>

>>>

>>>

>>>

>>>> How about a Knuth shuffle?

>>>

>>>> (Disclaimer: I'm not a statistician; | just found it on Wikipedia.)
>>>

>>>> function kunsort, array

>>>> na = n_elements(array)

>>>> random = randomu(seed,na) * (na - array - 1) + array

>>>> for i=0L,na-2 do array[i] = array[random([i]]

>>>> return, array

>>>> end

>>>

>>>> Added to Vince's code (last column):

>>>

>>>> 0 100000 0.0619998 0.0780001 0.0320001
>>>> 1 166810 0.125000 0.125000 0.0780001
>>>> 2 278256 0.282000 0.218000 0.141000
>>>> 3 464158 0.547000 0.406000 0.235000
>>>> 4 774263 1.07800 0.657000 0.390000
>>>> 5 1291549 1.93700 1.09400 0.703000
>>>> 6 2154435 3.51500 1.89100 1.20300
>>>> 7 3593812 6.34400 3.11000 1.98400
>>>> 8 5994841 115470 5.21800 3.36000
>>>> 9 10000000 20.3750 8.67200 5.60900
>>>

>>>> Windows XP, dual 2.66 GHz, 3 GB RAM, IDL 6.3

>>>

>>> |'m not sure, but | think that will give you "with replacement”.
>>

>>

>> You're right, | wasn't swapping. Corrected, and in the form of
>> Allan's method:

>>

>> function kunsort, array

>> na=n_elements(array)

>> rarray = array

>>

>> b =randomu(seed,na-1) * (na - lindgen(na-1) - 1) + lindgen(na-1)
>> for i=0L,na-2 do begin

>> tmp = rarray[i]

>> rarray[i] = rarray[b[i]]

>> rarray[b[i]] = tmp

>> endfor

>>

\Y

Page 27 of 35 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> return, rarray
>> end

>> With the change, it's slightly slower than Allan's. However, for what
>> it's worth, there are claims this is a less biased method. (Again, |
>> am no expert. But the recent poker craze seems to have revived
>> nterest in the probabilities of shuffling.)

Yours is doing a bit more than mine was in that it's creating a copy of
the original data rather than in-place swapping so that would make yours
a bit slower (but probably more useful). You can probably also get a
speed up by converting "b" to a long at creation time rather than
implicitly ever time you use it.

Looking over what a Knuth Shuffle is supposed to to, it seems that
you're only supposed to swap with an element you've not already passed
over; my code didn't do this but yours does. | guess Knuth is smarter
than me :). Although, | tend to not believe anything which appears on
Wikipedia.

However, in your code, it looks like the "na-1" in the creation of "b"
and the "na-2" in the loop will mean that the last element of the array
never gets swapped.

VVVVVVVVVYVVYVYVYVYVYV

As | understand it, | think that neither program correctly implements
Knuth's algorithm. Here's my (minimally tested) attempt. | wrote it as
an in-place shuffle, to save space:

PRO knuth_shuffle, array
na=N_ELEMENTS(array)
b = LONG((na+2-LINDGEN(na-1))*RANDOMU(seed, na-1))
FOR i=na-1, 1, -1 DO BEGIN
temp = array[b[i-1]]
array|[b[i-1]] = array][i]
array[i] = temp
ENDFOR
END

Subject: Re: Randomize array order
Posted by Conor on Fri, 27 Jul 2007 16:44:53 GMT

View Forum Message <> Reply to Message

On Jul 27, 12:05 pm, kuyper <kuy...@wizard.net> wrote:
> David Streutker wrote:

>> On Jul 27, 6:03 am, Allan Whiteford

> .

Page 28 of 35 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5992
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=54996#msg_54996
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=54996
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>> |f you have a million elements then you have 1000000! (i.e. one million
>>> factorial) different ways to re-order the data. However, your seed is a
>>> 4 byte integer which can only take 232 different values.

>
>>> Some messing about suggests that:
>

>>> 1000000! =~ 1075568636

>

>>> which means there are ~ 10"5568636 different ways to re-arrange your
>>> elements as opposed to the 4 x 10”9 values your seed can take.

>

>>> Thus, using any of the algorithms suggested you're only going to sample
>

>>> 10"-5568625 %

>

>>> of the possible values. This is a really small number. It means that no
>>> matter how hard you try and how many times you do things you'll never be
>>> able to access anything but a tiny number of the possibilities without
>>> doing multiple shufflings - | think it's something like 618737

>>> sub-shufflings (i.e. 5568636 / 9) but that could be wrong. However, that
>>> requires producing 618737 seeds per major-shuffle (and you can't use a
>>> generator based on a 4 byte seed to produce these seeds).

>

>>> But, since you're only going to be running the code 1000-10,000 times
>>> (which is much smaller than 4e9) | guess everything will be ok. | don't
>>> know if anyone has studied possible correlations of results as a

>>> function of the very small number of seeds (compared to the data),

>>> whatever random number generator is used and the shuffling method.
>>> Presumably they have and presumably everything is ok. Does anyone know?
>

>>> Thanks,

>

>>> Allan

>

>> |'m not sure that | agree. Where in any of our algorithms are we

>> unable to access a (theoretically) possible outcome? As long as we

>> are able to randomly select any element of the array in each step, it

>> should work, right? (l.e., as long as the input array has fewer than

>> 2732 elements.) In your analysis, shouldn't we be using (2*32)"n for

>> the maximum possible number of randomly generated combinations, where
>> nis the number of steps/elements?

>
> No, because the entire sequence of numbers is uniquely determined by
> initial internal state of the generator. If you knew the algorithm

> used, and the internal state, that's all the information you'd need to

> predict, precisely, the entire sequence of numbers generated, no

> matter how long that sequence was. If the internal state is stored in

> a 32 bit integer, that means there's only 2732 possible different

Page 29 of 35 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> seqguences.
>

>> From that fact, it can also be shown that every possible sequence must

start repeating, exactly, with a period that is less than 2*32. If one

of the possible sequences has starts repeating with a period T, then

at least T-1 of the other possible sequences generate that same repeat
cycle, with various shifts.

There's a reason why these things are called PSEUDO-random number
generators.

VVVVYVYVYVYV

It shouldn't really be a problem for me, fortunately. I'm running

this a couple thousand times, but everytime it is on a different set

of values. The only thing | would have to worry about is it repeating
within one set of values, which won't happen for 1,000,000 elements.

Of course, worse comes to worse there's always a true random number
generator:

www.random.org

Subject: Re: Randomize array order
Posted by David Streutker on Fri, 27 Jul 2007 17:54:07 GMT

View Forum Message <> Reply to Message

On Jul 27, 10:05 am, kuyper <kuy...@wizard.net> wrote:

> David Streutker wrote:

>> On Jul 27, 6:03 am, Allan Whiteford

> .

>>> |f you have a million elements then you have 1000000! (i.e. one million
>>> factorial) different ways to re-order the data. However, your seed is a
>>> 4 pyte integer which can only take 2732 different values.

>

>>> Some messing about suggests that:

>

>>> 1000000! =~ 1075568636

>

>>> which means there are ~ 10"5568636 different ways to re-arrange your
>>> elements as opposed to the 4 x 10”9 values your seed can take.

>

>>> Thus, using any of the algorithms suggested you're only going to sample
>

>>> 10"-5568625 %

>

>>> of the possible values. This is a really small number. It means that no
>>> matter how hard you try and how many times you do things you'll never be

Page 30 of 35 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5442
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=54994#msg_54994
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=54994
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>>
>>
>>
>>
>

>>
>>
>>
>>
>>
>>
>

>>
>

>>
>

>>
>>
>>

VVVVYVYVYVYVYV

>>

VVVVYVYVYVYV

Int

If t

> able to access anything but a tiny number of the possibilities without

> doing multiple shufflings - | think it's something like 618737

> sub-shufflings (i.e. 5568636 / 9) but that could be wrong. However, that
> requires producing 618737 seeds per major-shuffle (and you can't use a
> generator based on a 4 byte seed to produce these seeds).

> But, since you're only going to be running the code 1000-10,000 times

> (which is much smaller than 4e9) | guess everything will be ok. | don't

> know if anyone has studied possible correlations of results as a

> function of the very small number of seeds (compared to the data),

> whatever random number generator is used and the shuffling method.

> Presumably they have and presumably everything is ok. Does anyone know?

> Thanks,
> Allan

I'm not sure that | agree. Where in any of our algorithms are we

unable to access a (theoretically) possible outcome? As long as we

are able to randomly select any element of the array in each step, it

should work, right? (l.e., as long as the input array has fewer than

2732 elements.) In your analysis, shouldn't we be using (2*32)"*n for

the maximum possible number of randomly generated combinations, where
n is the number of steps/elements?

No, because the entire sequence of numbers is uniquely determined by
initial internal state of the generator. If you knew the algorithm

used, and the internal state, that's all the information you'd need to
predict, precisely, the entire sequence of numbers generated, no
matter how long that sequence was. If the internal state is stored in

a 32 bit integer, that means there's only 2*32 possible different
sequences.

From that fact, it can also be shown that every possible sequence must
start repeating, exactly, with a period that is less than 2"32. If one

of the possible sequences has starts repeating with a period T, then

at least T-1 of the other possible sequences generate that same repeat
cycle, with various shifts.

There's a reason why these things are called PSEUDO-random number
generators.

eresting. | hadn't really thought it through before.

here are only 232 possible sequences, then why is the internal

state characterized by a 36-element array?

Pag

e 31 of 35 ---- Generated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

IDL> test = randomu(seed)
IDL> help, seed

SEED

LONG = Array[36]

Is it that there are only 232 possible sequences available during any
given session? With a new set being available in a different session?

Subject: Re: Randomize array order
Posted by Conor on Fri, 27 Jul 2007 18:09:20 GMT

View Forum Message <> Reply to Message

On Jul 27, 1:54 pm, David Streutker <dstreut...@gmail.com> wrote:
> On Jul 27, 10:05 am, kuyper <kuy...@wizard.net> wrote:

>
>
>

>> David Streutker wrote:
>>> On Jul 27, 6:03 am, Allan Whiteford

>> .

>>>>
>>>>
>>>>
>

>>>>
>

>>>>
>

>>>>
>>>>
>

>>>>
>

>>>>
>

>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>

>>>>
>>>>
>>>>
>>>>
>>>>

If you have a million elements then you have 1000000! (i.e. one million
factorial) different ways to re-order the data. However, your seed is a
4 byte integer which can only take 232 different values.

Some messing about suggests that:
1000000! =~ 1075568636

which means there are ~ 10"5568636 different ways to re-arrange your
elements as opposed to the 4 x 10"9 values your seed can take.

Thus, using any of the algorithms suggested you're only going to sample
10"-5568625 %

of the possible values. This is a really small number. It means that no
matter how hard you try and how many times you do things you'll never be
able to access anything but a tiny number of the possibilities without

doing multiple shufflings - | think it's something like 618737

sub-shufflings (i.e. 5568636 / 9) but that could be wrong. However, that
requires producing 618737 seeds per major-shuffle (and you can't use a
generator based on a 4 byte seed to produce these seeds).

But, since you're only going to be running the code 1000-10,000 times
(which is much smaller than 4e9) | guess everything will be ok. | don't
know if anyone has studied possible correlations of results as a
function of the very small number of seeds (compared to the data),
whatever random number generator is used and the shuffling method.

Page 32 of 35 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5992
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=54992#msg_54992
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=54992
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>> Presumably they have and presumably everything is ok. Does anyone know?
>

>>>> Thanks,

>

>>>> Allan

>

>>> |'m not sure that | agree. Where in any of our algorithms are we

>>> unable to access a (theoretically) possible outcome? As long as we
>>> are able to randomly select any element of the array in each step, it
>>> should work, right? (l.e., as long as the input array has fewer than
>>> 232 elements.) In your analysis, shouldn't we be using (2732)"*n for
>>> the maximum possible number of randomly generated combinations, where
>>> n is the number of steps/elements?

>

>> No, because the entire sequence of numbers is uniquely determined by
>> jnitial internal state of the generator. If you knew the algorithm

>> used, and the internal state, that's all the information you'd need to

>> predict, precisely, the entire sequence of numbers generated, no

>> matter how long that sequence was. If the internal state is stored in

>> a 32 bit integer, that means there's only 232 possible different

>> sequences.

>

>>> From that fact, it can also be shown that every possible sequence must
>

>> start repeating, exactly, with a period that is less than 2*32. If one

>> of the possible sequences has starts repeating with a period T, then

>> at least T-1 of the other possible sequences generate that same repeat
>> cycle, with various shifts.

V
\%

There's a reason why these things are called PSEUDO-random number
generators.

V
V

Interesting. | hadn't really thought it through before.

If there are only 2732 possible sequences, then why is the internal
state characterized by a 36-element array?

IDL> test = randomu(seed)
IDL> help, seed
SEED LONG = Array[36]

Is it that there are only 232 possible sequences available during any
given session? With a new set being available in a different session?

VVVVVVVYVVYVYVYV

That is a very interesting question. According to the online-manual:

The random number generator is taken from: "Random Number Generators:
Good Ones are Hard to Find", Park and Miller, Communications of the

Page 33 of 35 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

ACM, Oct 1988, Vol 31, No. 10, p. 1192. To remove low-order serial
correlations, a Bays-Durham shuffle is added, resulting in a random
number generator similar to ranl1() in Section 7.1 of Numerical Recipes
in C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press.

Hmm... It turns out that randomn is completely useless. It claims to
use the Box-Muller method, which | happen to know is a simple
variation on a regular random number generator, but with half the
possible sequences. Therefore, it has: (2"32)/2 sequences = 1732
sequences =1 It repeats after generating only 1 random number!!!
Yikes!!!l Someone should alert RSI!!!

(okay, okay, it was a bad joke. So sue me.) Anyway, back to

reality. 1 wonder if RSI uses an array of size 36 to institute a

"virtual" increase of variable size, allowing for more precise
calculations??? Is such a thing possible? | don't know why else they
would need an array to hold their seed, although I'm going to guess it
is for another reason.

Subject: Re: Randomize array order
Posted by James Kuyper on Fri, 27 Jul 2007 21:29:17 GMT

View Forum Message <> Reply to Message

David Streutker wrote:

If there are only 2732 possible sequences, then why is the internal
state characterized by a 36-element array?

>
>
>
> |IDL> test = randomu(seed)

> IDL> help, seed

> SEED LONG = Array[36]

That is a VERY good question. | only looked at the documentation; |
didn't bother to check. The documentation says:

> The state of the random number generator is contained in a long integer vector.

and also

> |f the Seed argument is:

> * an undefined variable - the generic state is used and the resulting generic state array is stored

in the variable.

Given that the resulting generic state appears to be a 36-element
array, | don't think both statements can be true. An array of 36 longs

Page 34 of 35 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3483
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=54990#msg_54990
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=54990
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

would be more than enough to generate all possible shuffles of a 52-
card deck. More importantly, it's large enough to do large numerical
simulations in quantum field theory without introducing spurious
correlations. Therefore | hope that the second statement is the one
that's correct.

Subject: Re: Randomize array order
Posted by Michael Galloy on Fri, 27 Jul 2007 22:35:13 GMT

View Forum Message <> Reply to Message

On Jul 27, 3:29 pm, kuyper <kuy...@wizard.net> wrote:

> The documentation says:

>

>> The state of the random number generator is contained in a long integer vector.
>

> and also

>

>> |f the Seed argument is:

>> * an undefined variable - the generic state is used and the resulting generic state array is
stored in the variable.

>

> Given that the resulting generic state appears to be a 36-element

> array, | don't think both statements can be true.

| think those statements are consistent. The state is stored in a long
integer vector (a 36-element long integer array to be specific).

Mike

www.michaelgalloy.com

Page 35 of 35 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5698
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24979&goto=54988#msg_54988
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=54988
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

