Subject: Re: Another simple one
Posted by Brian Larsen on Sat, 28 Jul 2007 12:45:28 GMT

View Forum Message <> Reply to Message

Arrays do have to be rectangular, you can't have them with different
sizes in different dimensions. That being said you can populate a
structure with different 1-d arrays of different lengths or

something. The easiest way is probably not to do that however but to
keep an array with the indicies you are interested in from the data
array. Think where() and give that a try then you can reference it

like data[inds] to get the ones you want.

Brian Larsen
Boston University
Center for Space Physics

Subject: Re: Another simple one
Posted by Carsten Lechte on Sat, 28 Jul 2007 13:19:35 GMT

View Forum Message <> Reply to Message

Brian Larsen wrote:

> Arrays do have to be rectangular, you can't have them with different
> sizes in different dimensions. That being said you can populate a

> structure with different 1-d arrays of different lengths or

> something.

Or, you can use an array of pointers to differently-sized 1D arrays.
Then, you can use normal indexing for access, instead of a mix of
structure and array access. Chapter 8 of "Building IDL Applications"
deals with the concept of pointers.

chl

Subject: Re: Another simple one
Posted by Brian Larsen on Sat, 28 Jul 2007 14:14:01 GMT

View Forum Message <> Reply to Message

> Or, you can use an array of pointers to differently-sized 1D arrays.
> Then, you can use normal indexing for access, instead of a mix of
> structure and array access. Chapter 8 of "Building IDL Applications"
> deals with the concept of pointers.

>
>

chl

Page 1 of 5 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5775
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=25001&goto=55084#msg_55084
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55084
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5846
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=25001&goto=55082#msg_55082
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55082
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5775
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=25001&goto=55081#msg_55081
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55081
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

True, | normally take the "this is IDL not C, | don't have to fight
with pointers" route to these types of things, even if the pointer is
the better way.

Brian

Brian Larsen
Boston University
Center for Space Physics

Subject: Re: Another simple one
Posted by Mariolncandenza on Sun, 29 Jul 2007 19:39:23 GMT

View Forum Message <> Reply to Message

On Jul 28, 12:58 am, snudge42 <snudg...@gmail.com> wrote:
How do | truncate a multidimensional array at a different place for
each dimension i.e. | start with 3x6 array of values A=

000
000
000
000
000
000

and want to truncate each dimension at a fixed value stored in an
array B, where the values are (2,3,4) for example so that | get:

000
000
000
00
0

VVVVVVVVVVVVVVYVYVYVYVYV

By 'truncate’, you mean either "perform calculations on only part of

array A" or "write output of only part of array A". For the second

case, the I/0O penalty is far greater than the for-loop penalty, just

use a loop. For the first case, consider this:

:NOTE: this example truncates along rows, you'll need to TRANSPOSE to
do columns

btrunc=a*0; initialize truncation helper array

Page 2 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5297
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=25001&goto=55073#msg_55073
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55073
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

for i=0l,n_elements(b)-1 do btrunc[0]=(lindgen(b[i]+1))+1 gt O; anyone
care to try getting rid of this loop?

print,trunc

>11100

>11110

>11111

; from here, you can manipulate A in several ways:
; such as setting truncated components to NaN:
ftrunc=where(trunc eq 0)

anew=a & anew([ftrunc]=Ivalues.NaN

; setting truncated components to O:

anew= a * btrunc;

Hope this helps,

--Edward H.

Subject: Re: Another simple one
Posted by Jean H. on Mon, 30 Jul 2007 16:19:51 GMT

View Forum Message <> Reply to Message

Is that possible? Or does my array have to be square so have to
truncate the whole thing at element 4 for example?

>

>

>

> Cheers,
>

> Snudge42
>

Hi,
You can also use a 1D array containing all of your data... then you
should know which entries correspond to which line...

ex:a=[1,2,3,4,5,6]

you can think of A as
1,2,3

4,5

, ,6

So, but this starts to be useful with big arrays, you can have a 2D
array that indexes the 1D array...

ex:
indices2Dto1D = [[0,1,2],[-1,3,4],[-1,-1,5]]
print, "value of 2,2 =", a[indices2Dto1D[2,2]] ==> 6

Page 3 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5815
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=25001&goto=55061#msg_55061
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55061
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

and

indices1Dto2D =[0,1,2,4,5,8]

print, "2D coords of the value 6 =", indices1Dto2D[where(a eq 6)] ==>
8 (thisis the 1D coordinate in the 2D array... you can transform it
back to 2,2)

Jean

PS: | use this all the time to keep satellite images covering a study

area having a crazy shape... | save about 75% of the otherwise required
memory! ... | have to keep only 1 array covering the entire area, and

all the other arrays cover only the study area!

Subject: Re: Another simple one
Posted by snudge42 on Thu, 09 Aug 2007 04:43:48 GMT

View Forum Message <> Reply to Message

On Jul 31, 2:19 am, "Jean H." <jghas...@DELTHIS.ucalgary.ANDTHIS.ca>
wrote:

>> |s that possible? Or does my array have to be square so have to

>> truncate the whole thing at element 4 for example?

>

>> Cheers,

>

>> Snudge4?2

Hi,

You can also use a 1D array containing all of your data... then you
should know which entries correspond to which line...

ex:a=[1,2,3,4,5,6]

you can think of A as
1,2,3

4,5

, ,0

So, but this starts to be useful with big arrays, you can have a 2D
array that indexes the 1D array...

ex:
indices2Dto1D = [[0,1,2],[-1,3,4],[-1,-1,5]]

print, "value of 2,2 =", afindices2Dto1D[2,2]] ==> 6
and
indices1Dto2D =[0,1,2,4,5,8]

print, "2D coords of the value 6 =", indices1Dto2D[where(a eq 6)] ==>
8 (this is the 1D coordinate in the 2D array... you can transform it

VVVVVVVVVVVVVVVVVYVYVYVYVYVYV

Page 4 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6161
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=25001&goto=55260#msg_55260
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55260
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

back to 2,2)

Jean

PS: I use this all the time to keep satellite images covering a study

area having a crazy shape... | save about 75% of the otherwise required
memory! ... | have to keep only 1 array covering the entire area, and

all the other arrays cover only the study area!

VVVYVYVYVYV

Lots to think about there, thanks everyone. =)

Page 5 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

