
Subject: Bug in IDL's FILE_INFO function
Posted by Dave Wuertz on Thu, 30 Aug 2007 19:49:06 GMT
View Forum Message <> Reply to Message

Folks,

I believe there's a bug in the FILE_INFO function. I am running IDL
v6.4 on Linux.

I'm writing a program that does a lot of file updates and it's necessary
for me to get the current file size after an update to an open file. I
decided to use FILE_INFO rather than FSTAT because I also must first
check to see if the file exists. FILE_INFO can tell you if the file
exists as well it's size in bytes. It's also newer than FSTAT, so I
thought I'd just use FILE_INFO exclusively in my program.

Well, things just weren't making sense, and I boiled it down to this.
If I append a new record to a file and immediately check the file size
with FILE_INFO it gives me the wrong size. It returns the size BEFORE
the record was added. However, FSTAT will give the correct new size.
And, once FSTAT has been called, then FILE_INFO knows about the new
size. It's like FSTAT issues a FLUSH, because the only way FILE_INFO
gives the correct size is if FLUSH (or FSTAT) is called first. This is
fine, however there is no mention in the documentation that FLUSH must
be called first.

Below is some code to illustrate the problem:

pro file_info_vs_fstat

fname = 'test.txt'
openw, lun, /get_lun, fname
nrec = 3
for i = 0, nrec-1 do begin

 print, 'Before writing record file_info.size, fstat.size:', $
 (file_info(fname)).size, (fstat(lun)).size,
format='(a,1x,2i6)'

 printf, lun, 'This is record number ', i

 print, 'After writing record file_info.size, fstat.size:', $
 (file_info(fname)).size, (fstat(lun)).size,
format='(a,1x,2i6)'

 print, ' ' ; print blank line for readability

Page 1 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6191
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=25216&goto=55607#msg_55607
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55607
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

endfor
free_lun, lun

return
end
;;;;;;;;;;;;;;;; Run above procedure
;;
IDL> file_info_vs_fstat
Before writing record file_info.size, fstat.size: 0 0
After writing record file_info.size, fstat.size: 0 31

Before writing record file_info.size, fstat.size: 31 31
After writing record file_info.size, fstat.size: 31 62

Before writing record file_info.size, fstat.size: 62 62
After writing record file_info.size, fstat.size: 62 93

 ;; ;;;;;;;;;;;;;;;;;;;;;;

Now, if you replace the "After" print statement with the following one
that simply
reverses the order the two functions are called, you then get the
correct result from
the FILE_INFO function:

 print, 'After writing record fstat.size, file_info.size:', $
 (fstat(lun)).size, (file_info(fname)).size,
format='(a,1x,2i6)'

IDL> file_info_vs_fstat
Before writing record file_info.size, fstat.size: 0 0
After writing record fstat.size, file_info.size: 31 31

Before writing record file_info.size, fstat.size: 31 31
After writing record fstat.size, file_info.size: 62 62

Before writing record file_info.size, fstat.size: 62 62
After writing record fstat.size, file_info.size: 93 93

 ;; ;;;;;;;;;;;;;;;;;;;;;;

Ciao,

-Dave Wuertz

Subject: Re: Bug in IDL's FILE_INFO function

Page 2 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Posted by Dave Wuertz on Tue, 04 Sep 2007 14:47:11 GMT
View Forum Message <> Reply to Message

Reimar (and all),

I did not do these tests on a NFS mounted disk.

I just received a very good response from an ITT VIS Technical Support Engineer, James Jones,
and I don't think he'd mind if I post it here:

Quote:
FILE_INFO was not designed to be "more modern" than FSTAT. Rather, it was designed to get its
information from an alternative source in the file system. That is, these two functions are not
interfacing with the same UNIX functions. FILE_INFO was originally designed to work around a
weakness in FSTAT - that FSTAT could not provide its information without first opening the file.
FILE_INFO is a very thin wrapper for whatever Linux query exists to return the contents of a
simple address on the hard drive, whose update rules IDL has not been concerned with. It is
quick, and it neither requires, nor derives any benefit out of, the opening of the file being queried.

On the other hand, FSTAT is a thin wrapper for UNIX 'fstat', which queries the file stream, not the
file system. I do not know whether it is because 'fstat' knows that the file is open, and therefore
takes care to use algorithms (like 'flush') which insure more current data, or whether it is because
it is using a different lookup table, which is kept more instantaneously updated than the lookup
table used by FILE_INFO, but, either way, it makes sense that FSTAT is the safest querying
function to use when a file is open.

Because of FILE_INFO's whole reason for being - to avoid having to open a file - I think the
obvious approach here is to log a documentation, as opposed to a functionality, feature request. I
have, thus, logged today in our bug-tracking system new documentation request C.R.I.D. #49145
("REQUEST: Add Note to FILE_INFO Warning That Its Output Is Not Always Current Like
FSTAT's"), where I propose text along these lines:

"NOTE: If the file pointed to by 'path' is currently open, use FSTAT to query for its info. FILE_INFO
does not always catch changes that have occurred in a file that is currently open. FSTAT's info, on
the other hand, is always current."
End Quote

Thank you, James! With this information I know better now when it's
appropriate to use those two functions. And I agree a modification to
the documentation is the solution here.

-Dave Wuertz

Reimar Bauer said the following on 9/4/2007 7:03 AM:
> -----BEGIN PGP SIGNED MESSAGE-----
> Hash: SHA1
>
> Ive not tried but did you have used that example on a nfs mounted devivce ?
>

Page 3 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6191
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=25216&goto=55719#msg_55719
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55719
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> I am asking because nfs does not know atomic append.
>
> cheers
> Reimar
>
>
>
> Dave Wuertz wrote:
>
>> I suspect FSTAT is executing FLUSH whereas FILE_INFO must not be. I
>> doubt FSTAT is closing and re-opening, unless that is the only way to
>> perform the flush.
>>
>> I know the Linux OS has a buffering mechanism, but my experience has
>> been that it is very smart and efficient. For example, I've witnessed
>> Linux holding some recently written data in a buffer until *either* the
>> buffer gets filled *or* another application needs to read from the file
>> the data still being held in the buffer. It's like Linux is smart
>> enough to know that it doesn't *really* need to physically write small
>> amounts of information (a configurable OS parameter) unless it really
>> *has* to.
>>
>> There is no mention of flushing or buffering in the documentation for
>> FILE_INFO and FSTAT and both are supposed to return the current size of
>> an open file. The fact is they behave differently (at least on my IDL
>> version and platform). Interestingly, the doc for FLUSH, however, states
>> that *IDL* "uses buffered output for reasons of efficiency". I'm
>> wondering if IDL has it's own buffering mechanism on top of Linux's,
>> though I cannot imagine why it would need it.
>>
>> My only real purpose in this post is to point out that those functions
>> behave differently. This behavior should be either documented or the
>> code modified to to give the same result.
>>
>> -Dave Wuertz
>>
>> Jean H. said the following on 8/30/2007 4:10 PM:
>>
>>> FSTAT returns the info of an open file, while FILE_INFO returns the
>>> info of a file, opened or not.
>>>
>>> When you write to a file, it probably goes through some buffers (not
>>> sure of this / how)... for example, if one writes to a text file and
>>> tries to read this file in another program before it is closed, then
>>> you would see nothing in the file... though as soon as it has been
>>> closed by IDL, you can access it.
>>>
>>> So it doesn't look surprising that the FILE_INFO returns the previous

Page 4 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>> size... the question is, does FSTAT close and re-open the file for
>>> you? ... it appear so as after a call to it, you get the correct size!
>>>
>>> Jean
>>>
>>> Dave Wuertz wrote:
>>>
>>>> Folks,
>>>>
>>>> I believe there's a bug in the FILE_INFO function. I am running IDL
>>>> v6.4 on Linux.
>>>>
>>>> I'm writing a program that does a lot of file updates and it's
>>>> necessary for me to get the current file size after an update to an
>>>> open file. I decided to use FILE_INFO rather than FSTAT because I
>>>> also must first check to see if the file exists. FILE_INFO can tell
>>>> you if the file exists as well it's size in bytes. It's also newer
>>>> than FSTAT, so I thought I'd just use FILE_INFO exclusively in my
>>>> program.
>>>>
>>>> Well, things just weren't making sense, and I boiled it down to
>>>> this. If I append a new record to a file and immediately check the
>>>> file size with FILE_INFO it gives me the wrong size. It returns the
>>>> size BEFORE the record was added. However, FSTAT will give the
>>>> correct new size. And, once FSTAT has been called, then FILE_INFO
>>>> knows about the new size. It's like FSTAT issues a FLUSH, because
>>>> the only way FILE_INFO gives the correct size is if FLUSH (or FSTAT)
>>>> is called first. This is fine, however there is no mention in the
>>>> documentation that FLUSH must be called first.
>>>>
>>>> Below is some code to illustrate the problem:
>>>>
>>>>
>>>> pro file_info_vs_fstat
>>>>
>>>> fname = 'test.txt'
>>>> openw, lun, /get_lun, fname
>>>> nrec = 3
>>>> for i = 0, nrec-1 do begin
>>>>
>>>> print, 'Before writing record file_info.size, fstat.size:', $
>>>> (file_info(fname)).size, (fstat(lun)).size,
>>>> format='(a,1x,2i6)'
>>>>
>>>> printf, lun, 'This is record number ', i
>>>>
>>>> print, 'After writing record file_info.size, fstat.size:', $
>>>> (file_info(fname)).size, (fstat(lun)).size,

Page 5 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>> format='(a,1x,2i6)'
>>>>
>>>> print, ' ' ; print blank line for readability
>>>>
>>>> endfor
>>>> free_lun, lun
>>>>
>>>> return
>>>> end
>>>> ;;;;;;;;;;;;;;;; Run above procedure
>>>> ;;
>>>> IDL> file_info_vs_fstat Before writing record file_info.size,
>>>> fstat.size: 0 0
>>>> After writing record file_info.size, fstat.size: 0 31
>>>>
>>>> Before writing record file_info.size, fstat.size: 31 31
>>>> After writing record file_info.size, fstat.size: 31 62
>>>>
>>>> Before writing record file_info.size, fstat.size: 62 62
>>>> After writing record file_info.size, fstat.size: 62 93
>>>>
>>>> ;; ;;;;;;;;;;;;;;;;;;;;;;
>>>>
>>>>
>>>> Now, if you replace the "After" print statement with the following
>>>> one that simply
>>>> reverses the order the two functions are called, you then get the
>>>> correct result from
>>>> the FILE_INFO function:
>>>>
>>>> print, 'After writing record fstat.size, file_info.size:', $
>>>> (fstat(lun)).size, (file_info(fname)).size,
>>>> format='(a,1x,2i6)'
>>>>
>>>> IDL> file_info_vs_fstat Before writing record file_info.size,
>>>> fstat.size: 0 0
>>>> After writing record fstat.size, file_info.size: 31 31
>>>>
>>>> Before writing record file_info.size, fstat.size: 31 31
>>>> After writing record fstat.size, file_info.size: 62 62
>>>>
>>>> Before writing record file_info.size, fstat.size: 62 62
>>>> After writing record fstat.size, file_info.size: 93 93
>>>>
>>>> ;; ;;;;;;;;;;;;;;;;;;;;;;
>>>>
>>>>
>>>> Ciao,

Page 6 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>>
>>>> -Dave Wuertz
>>>>
>
> -----BEGIN PGP SIGNATURE-----
> Version: GnuPG v1.4.5 (GNU/Linux)
> Comment: Using GnuPG with SUSE - http://enigmail.mozdev.org
>
> iD8DBQFG3Tt65aOc3Q9hk/kRAlTUAJoC6Q3RcmYXiydJgQcGu1noj697JwCg hOi9
> cxuD/K5ROHSpqlNwf7sOCyo=
> =KpDO
> -----END PGP SIGNATURE-----
>

Subject: Re: Bug in IDL's FILE_INFO function
Posted by Kenneth Bowman on Tue, 04 Sep 2007 19:45:18 GMT
View Forum Message <> Reply to Message

In article <fbjr4p$e42$1@news.nems.noaa.gov>, Dave Wuertz <a@b.com> wrote:

> "NOTE: If the file pointed to by 'path' is currently open, use FSTAT
> to query for its info. FILE_INFO does not always catch changes that
> have occurred in a file that is currently open. FSTAT's info, on the
> other hand, is always current."

Wouldn't it be better to say something like this?

If the file is currently open, call FLUSH for that unit before
using FILE_INFO to ensure that the file state on disk is up to date.

Ken Bowman

Page 7 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5920
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=25216&goto=55706#msg_55706
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=55706
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

