Subject: Re: Minor IDL code changes cause large slowdowns elsewhere in code
Posted by R.G.Stockwell on Wed, 10 Oct 2007 19:05:38 GMT

View Forum Message <> Reply to Message

"cedric" <cedric@barrodale.com> wrote in message
news:1192042534.817071.151580@19g2000hsx.googlegroups.com...

> | have observed a problem in an IDL timber supply model that arose

> after having made some changes to use tables instead of computations
> in order to free up some memory space and to circumvent some involved
> computations.

offhand | would say that it is a memory problem. If you are causing any
swapping to disk, that is a killer. Could be due to fragmentation - try
allocating

huge blocks of memory at the start, thay may help.

Also, are you sure you did not introduce a memory leak with the
modifications?

Cheers,
bob

Subject: Re: Minor IDL code changes cause large slowdowns elsewhere in code
Posted by Haje Korth on Wed, 10 Oct 2007 21:04:52 GMT

View Forum Message <> Reply to Message

Any difference if you try the comparison with integer numbers assigned to
the tree types? Haje

"cedric" <cedric@barrodale.com> wrote in message
news:1192042534.817071.151580@19g2000hsx.googlegroups.com...

> | have observed a problem in an IDL timber supply model that arose

> after having made some changes to use tables instead of computations
in order to free up some memory space and to circumvent some involved
computations. Following these changes, there was a general four-fold
increase in execution times, even for those sections of code that were
unaffected by the change. After doing some analysis, | found that

this was at least partly due to large increases in times for

operations involving manipulating string fields in a vector of

structures (with, say, 50,000 elements).

For example, we have a string vector of the form
(*(*unit[i]).layer).species, where "unit" is a pointer to a vector of
large (30 MByte) "unit" structures with multiple tags, one of which is
a pointer to a vector of "layer" structures, and where each "layer"

VVVVVVYVVYVYVYVYV

Page 1 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5210
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=25487&goto=56331#msg_56331
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=56331
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2071
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=25487&goto=56329#msg_56329
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=56329
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

structure has "species" (a string) as one of its tags. Then commands
of the form

z = uniqg ((*(*unit[i]).layer).species, sort
(*(*unit[i]).layer).species)) , or
subs = where ((*(*unit[i]).layer).species eq 'PINE")

take much longer than with the original version (with the same
elements in the vector).

| have some work-arounds to recover some of the speed, but the
guestion is what is really going on here, where minor changes in the
code can cause large changes in the timing behavior of procedures that
are outside the code that was changed? Is there some memory
fragmentation issue? If so, how can this be overcome? (BTW, the
memory footprint of the code with tables is actually 40% smaller than
the original!) If anyone has any experience with something similar, |
would really appreciate their insights here.

VVVVVVVVVVVVVVVYVYVYVYV

Subject: Re: Minor IDL code changes cause large slowdowns elsewhere in code
Posted by cedric on Thu, 11 Oct 2007 19:06:28 GMT

View Forum Message <> Reply to Message

On Oct 10, 2:04 pm, "Haje Korth" <haje.ko...@nospam.jhuapl.edu> wrote:
> Any difference if you try the comparison with integer numbers assigned to

> the tree types? Haje
>

Thanks, Haje. With integers or floats the manipulations are much
faster. | guess that this is probably due to the need to do separate
memory allocations for each element of the string vectors during the
processing. | could change the codes to be integer, but am still
perplexed that the identical string vector manipulations were far
faster with the original code before the changes...

Subject: Re: Minor IDL code changes cause large slowdowns elsewhere in code
Posted by cedric on Thu, 11 Oct 2007 21:52:55 GMT

View Forum Message <> Reply to Message

On Oct 10, 12:05 pm, "R.G. Stockwell" <noem...@please.com> wrote:
> "cedric" <ced...@barrodale.com> wrote in message
>

> news:1192042534.817071.151580@19g2000hsx.googlegroups.com...
>

Page 2 of 3 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6235
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=25487&goto=56297#msg_56297
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=56297
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6235
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=25487&goto=56295#msg_56295
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=56295
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> | have observed a problem in an IDL timber supply model that arose

>> after having made some changes to use tables instead of computations
>> in order to free up some memory space and to circumvent some involved
>> computations.

>

> offhand | would say that it is a memory problem. If you are causing any
> swapping to disk, that is a killer. Could be due to fragmentation - try
> allocating

> huge blocks of memory at the start, thay may help.

>

> Also, are you sure you did not introduce a memory leak with the

> modifications?

>

> Cheers,

> bob

Thanks for your response, Bob. | have tried pre-allocating large
memory, and even rebooting, pre-allocating, and running with no other
user processors. No improvement, unfortunately.

As for a memory leak, | could be wrong but | don't see how adding a
data structure consisting of a few tables (30 x 50,000 - no pointers)
could be a source of a memory leak. Also, looking at task manager, the
memory seems to hold about constant after the first initial load (800
MB). Of course, | can't really be sure here. Any suggestions about how
to detect a memory leak in an IDL process?

Page 3 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

