Subject: for loop is killing me
Posted by tarequeaziz on Tue, 06 Nov 2007 06:31:24 GMT

View Forum Message <> Reply to Message

Hello all,

help me! I am running a code 'infested’ with for loops.And as u can
guess, its painfully slow. The part of my code with loop looks like
the following:

jumpl:

;Setting up the Green functions array which will have the same number
of elements as of amp_vec

G=fltarr(n_elements(amp_vec),n_elements(amp_vec))
G_phi=fltarr(n_elements(amp_vec))
G_rp=fltarr(n_elements(amp_vec))
G_r=fltarr(n_elements(amp_vec))
G_in=fltarr(n_elements(amp_vec))
G_out=fltarr(n_elements(amp_vec))
G_p-=fltarr(n_elements(amp_vec))
G_h=fltarr(n_elements(amp_vec))
gp=flitarr(n_elements(amp_vec))
gh=fltarr(n_elements(amp_vec))

G_in_msum = fltarr(n_elements(amp_vec))
G_out_msum = fltarr(n_elements(amp_vec))
G_in_phisum = fltarr(n_elements(amp_vec))
G_out_phisum = fltarr(n_elements(amp_vec))

if ignore_realdata eq 1. then begin
amp_vec= abs(randomn(0.5,n_radial_points,/double))
a=1.

;print," amp_vec is',amp_vec

endif

do_u_like_to_start with_rp loop =0 ; Set 1 if YES,0 if NO

if do_u_like to_start with_rp_loop eq 1. then BEGIN
PRINT," WE ARE USING rp PREFERED LOOP'
goto,jump2

ENDIF

Page 1 of 9 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6248
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=25599&goto=56590#msg_56590
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=56590
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

PRINT," WE ARE USING r PREFERED LOOP"
fori_r=0,n_radial_points-1 do begin

loop_time = systime(1)
if ignore_realdata eq 1. then begin

r_scld=(i_r*2.)/(n_radial_points -1) ;--------- > We took off
trap radius from here for scaling purpose,see note

o > Also note the use of factor 2. This is because, we
want to get values outside

> the cylinder. But this is just for demonstration purpose!!!!
endif else begin

r_scld=(i_r)/(n_radial_points -1) ; took off the factor 2

endelse
;r_scld = 2.

;print,'r_scld value is ',r_scld

fori_rp= 0,n_radial_points-1 do begin

if ignore_realdata eq 1. then begin

rp_mat = randomn(1,n_radial_points,/double)
;print,'rp_mat is',rp_mat

rp_scld = rp_mat(i_rp)
endif else begin
;rp_scld=(i_rp/((n_radial_points-1))) * float(amp_vec(i_rp))
rp_scld= float(amp_vec(i_rp))

;print," amp_vec is',amp_vec

endelse

; rp_scld=(i_rp/((n_radial_points-1))) * float(amp_vec(i_rp))

;rp_mat = randomn(1,n_radial_points,/double)
; print,'rp_mat is',rp_mat

Page 2 of 9 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;rp_scld = rp_mat(i_rp)

;rp_scld =0.5

;;print,'rp_scld for i_rp=",i_rp,"is, ',rp_scld

if (r_scld gt rp_scld) then begin
r_plus =r_scld

r_minus = rp_scld

endif else begin

r_minus =r_scld

r_plus =rp_scld

endelse

;print,'r_plus value is ',r_plus
;print,'r_minus value is ',r_minus

fori_m=1,20 do begin :n_radial_points do begin

;;print,'starting i_m value is ',i_m

;if (n_radial_points le 5) then i_phi_max = 20 else i_phi_max =
n_radial_points

;print,'i phi max is = ',i_phi_max

i_phi_max = 20.

for i_phi=0,i_phi_max - 1 do begin
; print,'starting i_phi value is',i_phi

count=i_phi + 1.
;print,'count is ',count
phi=(count*2*IP1)/(i_phi_max)

; print,'phi value is=",phi
; phi= 0.785398163 ; <----- In radian

a=1. ;---—-- > Scaled trap radius

gp(i_phi) = 2.0*(1./i_m)*(r_minus/r_plus)i_m *
cos(i_m*(phi))

gh(i_phi) = 2.0*(1./i_m)*(r_minus * r_plus/a*2)"i_m *
cos(i_m*(phi))

;print,'cos(i_m*phi) is',cos(i_m*phi)

Jdf (i_req0.) && (i_rpeq0.) && (i_meq1l.) then begin

Page 3 of 9 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;print," the 1st gp is ',gp(i_phi)
;print," the 1st ghis ',gh(i_phi)
;endif

;if (i_reqn_radial_points -1.) && (i_rp eq
n_radial_points -1.) && (i_m eq n_radial_points -1.) then begin

;print," the Last gp is ',gp(i_phi)
;print,' the Last gh is ',gh(i_phi)

;endif
endfor ; end of phi loop
G_in_phisum [i_m -1] = total(gp) ; Add up the phi elements

for a specific m
G_out_phisum [i_m -1] = total(gh)

endfor ; end of m-loop

G_in_msum(i_rp) = total(G_in_phisum) ; Add up all m values for
a specific rp value
G_out_msum(i_rp) = total(G_out_phisum)

G_in(i_rp) = -alog((r_plus)*2.) + G_in_msum[i_rp]
G_out(i_rp) = -alog((a™2./rp_scld)*2.) + G_out_msum([i_rp]
;print,'G_in is',G_in
;print,'G_out is',G_out
G(i_r,i_rp)=G_in(i_rp) - G_out(i_rp) - alog((a/rp_scld)"2.)
index=where(finite(G,/NaN) ,count)
;print,’ index is ',index
if (count ne 0) then GJ[index] = 0.
non_zero = where(G,count)

print,'non zero value is',non_zero

; if count ne 0. then G = G[non_zero]

;print," last log part',alog((a/rp_scld)*2.)

Page 4 of 9 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;print, G_in- G_outis ',G_in - G_out
;print,'G inside rp loop is ,G(i_r,i_rp),' fori r="ji r,
andi_rp="i_rp

endfor ;end of rp loop

:G_p=G_in

;G_h=G_out

;print,’G_pis',G_p,’and G_his',G_h
:G(i_r,i_rp)=G_p(i_rp) - G_h(i_rp) - alog((a/rp_scld)*2.)

;print,'rp_scld is ',rp_scld
; print,’ G inside the r loop is',G

;if i_r eq (n_radial_points-1) then print,'Last r_scld value is=',
r_scld

;ifi_req ((n_radial_points-1)/10.) then print,'First 1/10th
r_scld value is=', r_scld

;ifi_req ((n_radial_points-1)/2.) then print,'First 1/2th
r_scld value is=', r_scld

;ifi_req ((n_radial_points-1)*3./4.) then print,'3/4 th r_scld
value is=', r_scld

;if i_r eq (n_radial_points-1) then print,'Last r_scld value is=',
r_scld

if i_r eq (n_radial_points - 1.) then begin

print,"The time it took to finish ",i_r,'th loop is’, systime(1) -
loop_time,'seconds'’

endif

endfor ; end of r loop

;print,'here is the PROFILER report for r prefered loop'

print,'G is ',G ;[n_radial_points - 1]

if ignore_realdata eq 1 then begin

r_vec=(findgen(n_radial_points)/(n_radial_points))
potential=fltarr(n_radial_points)

Page 5 of 9 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

prod = fltarr(n_radial_points)
endif else begin

r_vec=(findgen(n_theta_points)/(n_theta_points))
potential=fltarr(n_theta points)
prod = fltarr(n_theta_points)
endelse

if ignore_realdata eq 1 then p= n_radial_points else p= n_theta_points

for k = 0,100 do begin ;p -1 do begin
;rp_mat = randomn(1,n_radial_points,/double)
;print," amp_vec is',amp_vec
;print,"amp_vec is',amp_vec[k]
print,'G[*,K] is',G[*,K]
prod =amp_vec[k] * G(*,k)
prod_invfft = abs(fft(prod,/inverse))
potential[k] = int_tabulated(r_vec,prod_invfft)
;print,'potential is',potential

So as u can see there are 4 for loops running. the m loop with
running index i_m should be 200. But setting it to 200 slows down the
program.

My supervisor said that, this should be a very fast way of calculating
green function than the traditional way(which my group-mate is doing).

what | am doing wrong?
Any help will be HIGHLY appreciated!
Best,

Tareque

Subject: Re: for loop is killing me
Posted by Conor on Thu, 08 Nov 2007 15:26:27 GMT

View Forum Message <> Reply to Message

Okay, here's one more for you. Your m loop and phi loop can both be
made for loop-less. Here's your warning though: | haven't tested this

Page 6 of 9 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5992
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=25599&goto=56648#msg_56648
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=56648
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

code in the slightest. It's hard to test stuff when it is part of a

much larger program, so I'll leave that to you. I'll just explain

what this chunk of code is doing. So this replaces your m and your
phi loops:

i_phi_max = 20.
phis = rebin(findgen(i_phi_max)+1,i_phi_max,i_phi_max)
i_ms = rebin(findgen(1,i_phi_max)+1,i_phi_max,i_phi_max)

gp = 2.0%(1./i_ms)*(r_minus/r_plus)*i_ms * cos(i_ms * phis*2*IPI/
i_phi_max)

gh = 2.0*(1./i_ms)*(r_minus*r_plus/a*2)"i_ms * cos(i_ms * phis*2*IPI/
i_phi_max)

G_in_phisum = total(gp,1)
G_out_phisum = total(gh,1)

The general idea here is to simply do all the calculations at once,
combined into one big array operation. So for instance from looking

at the phi loop you know that your phi's are going to go from 1-20 and
are going to be used 20 times by the m-loop. Imagine this as a 20x20
array where each row contains the numbers 1-20. The second line (phis
= rebin()) creates such a 20x20 array. Rebin is used to repeat the
findgen() 20 times vertically.

Next consider your i_m's. These will also have the values 1-20 and
will be used against the different values in the phis array. So you
can consider it to be a 20x20 array where each column has the values
1-20. Once again, this array is created using rebin and findgen in a
very similar way to how | created the phi array. Once this is
accomplished you have two 20x20 arrays with all the 400 possible
combinations of phi and m. Then, you perform your calculations
exactly as you did in the for loop and in one go calculate all the
possible results. Finally you use the dimension keyword to the total
function to sum up along rows. Viola, no more for loops! To make
sure things are clear, | want to explain this in a different way:

The idea is to do all your calculations at once. To make this happen
| created a 20x20 array for the phi loop and a 20x20 array for the m
loop. The idea is to pre-calculate all possible combinations of m and
phi and calculate all the possible values at once. That's what the
phis and ims arrays are for. Between them they contain all possible
values for i_m and phi. Traveling along a row is the equivelent of
looping over phi, and traveling along a column is the equivilent of
looping over i_m. So for instance if, with your original set up, you
were in the 3rd iteration of the m-loop and the 12th iteration of the
phi loop the i_m variable would have the value of 3 and the phi

Page 7 of 9 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

variable would have the value of 12. With the new setup if you
printed out the values of i_ms[11,2] and phis[11,2] you would get the
values 3 and 12! Hopefully this all makes sense.

Also, please note that there is a potential source of confusion

between my code and yours because for your phi-loop you looped from
phi=0,19 but then added one later. In my code this meant that the
findgen() for phi had a +1 after it.

Subject: Re: for loop is killing me
Posted by Conor on Thu, 08 Nov 2007 19:26:37 GMT

View Forum Message <> Reply to Message

Okay, here's one more for you. Your m loop and phi loop can both be
made for loop-less. Here's your warning though: | haven't tested this
code in the slightest. It's hard to test stuff when it is part of a

much larger program, so I'll leave that to you. I'll just explain

what this chunk of code is doing. So this replaces your m and your
phi loops:

i_phi_max = 20.
phis = rebin(findgen(i_phi_max)+1,i_phi_max,i_phi_max)
i_ms = rebin(findgen(1,i_phi_max)+1,i_phi_max,i_phi_max)

gp = 2.0*%(1./i_ms)*(r_minus/r_plus)i_ms * cos(i_ms * phis*2*IP1/
i_phi_max)

gh = 2.0*(1./i_ms)*(r_minus*r_plus/a”2)i_ms * cos(i_ms * phis*2*!PI|/
i_phi_max)

G_in_phisum = total(gp,1)
G_out_phisum = total(gh,1)

The general idea here is to simply do all the calculations at once,
combined into one big array operation. So for instance from looking

at the phi loop you know that your phi's are going to go from 1-20 and
are going to be used 20 times by the m-loop. Imagine this as a 20x20
array where each row contains the numbers 1-20. The second line (phis
= rebin()) creates such a 20x20 array. Rebin is used to repeat the
findgen() 20 times vertically.

Next consider your i_m's. These will also have the values 1-20 and
will be used against the different values in the phis array. So you

can consider it to be a 20x20 array where each column has the values
1-20. Once again, this array is created using rebin and findgen in a
very similar way to how | created the phi array. Once this is
accomplished you have two 20x20 arrays with all the 400 possible

Page 8 of 9 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5992
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=25599&goto=56642#msg_56642
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=56642
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

combinations of phi and m. Then, you perform your calculations
exactly as you did in the for loop and in one go calculate all the
possible results. Finally you use the dimension keyword to the total
function to sum up along rows. Viola, no more for loops! To make
sure things are clear, | want to explain this in a different way:

The idea is to do all your calculations at once. To make this happen
| created a 20x20 array for the phi loop and a 20x20 array for the m
loop. The idea is to pre-calculate all possible combinations of m and
phi and calculate all the possible values at once. That's what the
phis and ims arrays are for. Between them they contain all possible
values for i_m and phi. Traveling along a row is the equivelent of
looping over phi, and traveling along a column is the equivilent of
looping over i_m. So for instance if, with your original set up, you
were in the 3rd iteration of the m-loop and the 12th iteration of the
phi loop the i_m variable would have the value of 3 and the phi
variable would have the value of 12. With the new setup if you
printed out the values of i_ms[11,2] and phis[11,2] you would get the
values 3 and 12! Hopefully this all makes sense.

Also, please note that there is a potential source of confusion

between my code and yours because for your phi-loop you looped from
phi=0,19 but then added one later. In my code this meant that the
findgen() for phi had a +1 after it.

Page 9 of 9 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

