Subject: Principal component analysis Posted by Haje Korth on Wed, 05 Dec 2007 14:00:11 GMT

View Forum Message <> Reply to Message

Hi,

I am puzzled by principal component analysis. I calculated the eigenvalues using both PCOMP and IMSP_PRINC_COMP routines. Could someone enlighten me why the results are completely different? I have tried different keywords to see whether I can match them by trial and error, but I had no success. There must be someone out there who undertstands this much better than I do.

Thanks so much, Haje

IDL> a=[[1,-2,-6],[-2,1,-3],[-6,-3,5]]
IDL> pca=pcomp(a,eigenvalues=ev) & print,transpose(ev)
2.24227 0.757732 0.000000
IDL> ev=imsl_princ_comp(a) & print,ev
9.53359 -5.19751 2.66392

Subject: Re: Principal component analysis
Posted by Haje Korth on Wed, 05 Dec 2007 16:51:05 GMT
View Forum Message <> Reply to Message

yes, but the imsl routine had a finite third eigenvalue while PCOMP showed this value as zero. That was difficult to understand. Vince came up with the call that will produce the same result as pcomp: IMSL_PRINC_COMP(CORRELATE(a)). Again, I am not quite sure I understand this. Shouldn't the correlation analysis be part of the PCA?

news:MPG.21c07edf91c4354298a12d@news.frii.com...

> Haje Korth writes:

> thanks for validating this. I tend to just go with PCOMP since I don't

>> really know what the IMSL routine actually does. As I wrote in the

>> response

>> to David I just got thrown off by not being able to reconcile the output

>> from the different routines.

It looks to me like passing the CORRELATE results
 to EIGENQL just scales the eigenvalues into -1 to 1. That
 would seem to be a sensible choice to me.

"David Fanning" <news@dfanning.com> wrote in message

> Cheers,

- > David
- > -
- > David Fanning, Ph.D.
- > Fanning Software Consulting, Inc.
- > Coyote's Guide to IDL Programming: http://www.dfanning.com/
- > Sepore ma de ni thui. ("Perhaps thou speakest truth.")

Subject: Re: Principal component analysis
Posted by Vince Hradil on Wed, 05 Dec 2007 16:57:06 GMT
View Forum Message <> Reply to Message

```
On Dec 5, 10:47 am, "Haje Korth" <haje.ko...@nospam.jhuapl.edu> wrote:
> Yup, that'll do it. I am still not sure I understand the logic behind this.
> I though the correlation is part of the PCA.
  "Vince Hradil" <hrad...@yahoo.com> wrote in message
>
  news:8362380a-217a-45d2-b7c4-0198e5931b39@y5g2000hsf.googleg roups.com...
>> On Dec 5, 10:08 am, "Haje Korth" <haje.ko...@nospam.jhuapl.edu> wrote:
>>> I have tried that, it gives
>>> IDL> ev=imsl princ comp(correlate(a,/cov)) & print,ev
        45.2906
                   3.70938-2.65683e-006
>>>
>>> These EVs are the same as you get using PCOMP with /COV keyword.
>>> "Vince Hradil" <hrad...@yahoo.com> wrote in message
>>> news:54fc6ed8-ccd7-4ac6-8e0d-09f5d190eeac@o6g2000hsd.googleg roups.com...
>>> On Dec 5, 9:12 am, Vince Hradil <a href="mailto:hrad...@yahoo.com">hrad:..@yahoo.com</a> wrote:
>>>> On Dec 5, 8:00 am, "Haje Korth" <haje.ko...@nospam.jhuapl.edu> wrote:
>>>> > Hi,
>>>> > I am puzzled by principal component analysis. I calculated the
>>>> > eigenvalues
>>>> > using both PCOMP and IMSP_PRINC_COMP routines. Could someone
>>>> > enlighten
>>>> > me
>>>> > why the results are completely different? I have tried different
>>>> > keywords to
>>>> > see whether I can match them by trial and error, but I had no
>>>> > success.
>>>> > There
>>>> > must be someone out there who undertstands this much better than I
>>>> > do.
```

```
>>>> > Thanks so much,
>>>> > Haje
>>>>> > IDL> a=[[1,-2,-6],[-2,1,-3],[-6,-3,5]]
>>>> > IDL> pca=pcomp(a,eigenvalues=ev) & print,transpose(ev)
>>>> >
            2.24227
                      0.757732
                                 0.000000
>>>> > IDL> ev=imsl_princ_comp(a) & print,ev
           9.53359
                     -5.19751
                                 2.66392
>>>> >
>>>> From the HELP:
>>>> > Syntax
>>>> Result = IMSL_PRINC_COMP(covariances [, /COV_MATRIX]
>>>> [, /CORR_MATRIX] [, CORRELATIONS=variable] [, CUM_PERCENT=variable] [,
>>>> DF=variable] [, /DOUBLE] [, EIGENVECTORS=variable] [,
>>>> STDEV=variable])
>>>> Note that IMSL_PRINC_COMP requires that you pass the covariance or
>>>> correlation matrix - not the vectors.
>>>> so maybe try
>>> ev=imsl princ comp(correlate(a,/covariance) & print, ev
>>>> (I don't have an analyst license)
>
>> There you go 8^)
>> How about
>> ev=imsl_princ_comp(correlate(a)) & print, ev
```

Oh, yes correlation IS part of PCA, it's just that IMSL decided to let the user do that part him/herself. IMSL_PRINC_COMP calculates the principal components of the cov/cor matrix. Calculating these principal components is just part of "Principle Components Analysis". IMSL leaves it up to the user to decide how to implement the principal components in his/her analysis.

Subject: Re: Principal component analysis
Posted by Haje Korth on Wed, 05 Dec 2007 17:02:28 GMT
View Forum Message <> Reply to Message

THanks, I guess I was expecting the whole package for a routine with that name. And the help was not helping either. :-)

"Vince Hradil" <hradilv@yahoo.com> wrote in message news:d447b810-a195-4e34-8dd6-a353ba4a3ac9@b40g2000prf.google groups.com... > On Dec 5, 10:47 am, "Haje Korth" <haje.ko...@nospam.jhuapl.edu> wrote: >> Yup, that'll do it. I am still not sure I understand the logic behind

```
>> this.
>> I though the correlation is part of the PCA.
>>
     "Vince Hradil" <hrad...@yahoo.com> wrote in message
>>
     news:8362380a-217a-45d2-b7c4-0198e5931b39@y5g2000hsf.googleg roups.com...
>>
>>> On Dec 5, 10:08 am, "Haje Korth" <haje.ko...@nospam.jhuapl.edu> wrote:
>>>> I have tried that, it gives
>>>> IDL> ev=imsl princ comp(correlate(a,/cov)) & print,ev
>>>>
              45.2906
                               3.70938-2.65683e-006
>>
>>> These EVs are the same as you get using PCOMP with /COV keyword.
>>
>>> "Vince Hradil" <hrad...@yahoo.com> wrote in message
>>
>>> news:54fc6ed8-ccd7-4ac6-8e0d-09f5d190eeac@o6g2000hsd.googleg roups.com...
>>
>>> > On Dec 5, 9:12 am, Vince Hradil <a href="mailto:hrad...@yahoo.com">hradil: <a href="mailto:hrad...@yahoo.com">hrad...@yahoo.com</a>>
>>> > On Dec 5, 8:00 am, "Haje Korth" <haje.ko...@nospam.jhuapl.edu>
>>>> > wrote:
>>
>>>> >> Hi,
>>> >> I am puzzled by principal component analysis. I calculated the
>>> >> eigenvalues
>>> >> using both PCOMP and IMSP_PRINC_COMP routines. Could someone
>>>> >> enlighten
>>>> >> me
>>> >> why the results are completely different? I have tried different
>>> >> keywords to
>>> >> see whether I can match them by trial and error, but I had no
>>>> >> Success.
>>>> >> There
>>> >> must be someone out there who undertstands this much better than
>>>> >> |
>>>> >> do.
>>>> >> Thanks so much,
>>>> >> Haje
>>
>>> >> IDL> a=[[1,-2,-6],[-2,1,-3],[-6,-3,5]]
>>> >> IDL> pca=pcomp(a,eigenvalues=ev) & print,transpose(ev)
>>>> >>>
                     2.24227
                                     0.757732
                                                      0.000000
>>> >> IDL> ev=imsl_princ_comp(a) & print,ev
                                    -5.19751
                                                      2.66392
                     9.53359
>>>> >>>
>>
>>>> >> From the HELP:
>>
```

```
>>>> >> Syntax
>>> >> Result = IMSL_PRINC_COMP(covariances [, /COV_MATRIX]
>>> > [, /CORR_MATRIX] [, CORRELATIONS=variable] [, CUM_PERCENT=variable]
>>>> [,
>>> >> DF=variable] [, /DOUBLE] [, EIGENVECTORS=variable] [,
>>>> >> STDEV=variable])
>>
>>> >> Note that IMSL_PRINC_COMP requires that you pass the covariance or
>>> >> correlation matrix - not the vectors.
>>
>>>> > so maybe try
>>> > ev=imsl princ comp(correlate(a,/covariance) & print, ev
>>> > (I don't have an analyst license)
>>
>>> There you go 8^)
>>> How about
>>> ev=imsl_princ_comp(correlate(a)) & print, ev
> Oh, yes correlation IS part of PCA, it's just that IMSL decided to let
> the user do that part him/herself. IMSL_PRINC_COMP calculates the
> principal components of the cov/cor matrix. Calculating these
> principal components is just part of "Principle Components Analysis".
> IMSL leaves it up to the user to decide how to implement the principal
```

> components in his/her analysis.