
Subject: Re: Avoiding FOR loops (version googleplex.infinity)
Posted by MichaelT on Mon, 07 Apr 2008 16:19:34 GMT
View Forum Message <> Reply to Message

You can do it without WHERE and EXTRACT. As long as your the number of
surrounding elements and your 2d Byte array is not too large.
Otherwise you may get an "unable to allocate memory: to make array"
message. Basically, arrays of indexes are generated so that you can
directly compare your original array with its 5x5 = 25 shifted
versions. The positions at the border are not considered.

==============code begins======================
;Generate a byte array with random numbers, ranging from 0 to 9
nx = 300
ny = 200
b = byte(randomu(s, nx, ny) * 10)

;Define your search "radius". Your search area is 5x5 so the search
radius (sr) is 2
sr = 2

;width and height of your search area is (sr * 2 + 1)
nsr = (sr * 2 + 1)

;Generate an array containing the index deviations from your central
index (for x and y indexes)
;Example for x
;-2, -1, 0, 1, 2
;-2, -1, 0, 1, 2
;-2, -1, 0, 1, 2
;-2, -1, 0, 1, 2
;-2, -1, 0, 1, 2
;y is simply the transposed of x

vx = (LINDGEN(nsr) - sr) # (LONARR(nsr) + 1l)
vy = Transpose(vx)

;Reform the (5x5) array so that it becomes a vector of length (25)
vx = reform(vx, nsr^2)
vy = reform(vy, nsr^2)

;Now replicate this for each element of your byte array (omitting the
sr=2 positions at each border)
vxs = replicate({a: vx}, nx - 2*sr, ny - 2*sr)
vx = vxs.a

vys = replicate({a: vy}, nx - 2*sr, ny - 2*sr)

Page 1 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5727
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26620&goto=59689#msg_59689
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=59689
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

vy = vys.a

;Now the x- and y-indexes of your byte array are generated, again
omitting the positions at the border.
;So it starts at position sr=2 and runs through position nx-1-
sr=nx-1-2
ix = (lonarr(ny - 2*sr) + 1l) # (lindgen(nx - 2*sr) + sr)
iy = (lindgen(ny - 2*sr) + sr) # (lonarr(nx - 2*sr) + 1l)

;Replicate this as often as there are elements in your 5x5 window =
nsr^2 = 25.
ixs = replicate({a: ix}, nsr^2)
iys = replicate({a: iy}, nsr^2)

;Transpose the array so that it has the same dimensions as vx and vy
ix = transpose(ixs.a)
iy = transpose(iys.a)

;Now the shifted positions are generated simply by adding the index
deviations to the index numbers
ixv = ix + vx
iyv = iy + vy

;b[ixv, iyv] eq b[ix, iy] results in an array containing 1 where a
shifted position is equal to the central position otherwise 0.
;This is summed over your 25 shifted positions: total(result, 1)
;In the end you have to substract 1 from each element as the central
position is compared to itself as well and contributes to the sum.

bn = total(b[ixv, iyv] eq b[ix, iy], 1) - 1l

;Location [0, 0] in the bn-array then corresponds to the value for [2,
2] in the b-array, due to the border problem

;Print example to check:
print, bn[0, 0]
print, b[0: 4, 0: 4]

end
==========code end========================

I hope it will work in your case and should be quicker than a loop.

Michael

Subject: Re: Avoiding FOR loops (version googleplex.infinity)

Page 2 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Posted by MichaelT on Mon, 07 Apr 2008 16:25:26 GMT
View Forum Message <> Reply to Message

You can do it without WHERE and EXTRACT. Basically, you have to
generate arrays of indexes for the original array and, in your case,
its 25 shifted versions. Then you can directly compare your central
position values to the surrounding values. If your search area is
large and/or your byte array, you may get the "unable to allocate
memory: to make array" message by IDL.

=================code begin===========================

;Generate a byte array with random numbers, ranging from 0 to 9
nx = 300
ny = 200
b = byte(randomu(s, nx, ny) * 10)

;Define your search "radius". Your search area is 5x5 so the search
radius (sr) is 2
sr = 2

;width and height of your search area is (sr * 2 + 1)
nsr = (sr * 2 + 1)

;Generate an array containing the index deviations from your central
index (for x and y indexes)
;Example for x
;-2, -1, 0, 1, 2
;-2, -1, 0, 1, 2
;-2, -1, 0, 1, 2
;-2, -1, 0, 1, 2
;-2, -1, 0, 1, 2
;y is simply the transposed of x

vx = (LINDGEN(nsr) - sr) # (LONARR(nsr) + 1l)
vy = Transpose(vx)

;Reform the (5x5) array so that it becomes a vector of length (25)
vx = reform(vx, nsr^2)
vy = reform(vy, nsr^2)

;Now replicate this for each element of your byte array (omitting the
sr=2 positions at each border)
vxs = replicate({a: vx}, nx - 2*sr, ny - 2*sr)
vx = vxs.a

vys = replicate({a: vy}, nx - 2*sr, ny - 2*sr)
vy = vys.a

Page 3 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5727
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26620&goto=59688#msg_59688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=59688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;Now the x- and y-indexes of your byte array are generated, again
omitting the positions at the border.
;So it starts at position sr=2 and runs through position nx-1-
sr=nx-1-2
ix = (lonarr(ny - 2*sr) + 1l) # (lindgen(nx - 2*sr) + sr)
iy = (lindgen(ny - 2*sr) + sr) # (lonarr(nx - 2*sr) + 1l)

;Replicate this as often as there are elements in your 5x5 window =
nsr^2 = 25.
ixs = replicate({a: ix}, nsr^2)
iys = replicate({a: iy}, nsr^2)

;Transpose the array so that it has the same dimensions as vx and vy
ix = transpose(ixs.a)
iy = transpose(iys.a)

;Now the shifted positions are generated simply by adding the index
deviations to the index numbers
ixv = ix + vx
iyv = iy + vy

;b[ixv, iyv] eq b[ix, iy] results in an array containing 1 where a
shifted position is equal to the central position otherwise 0.
;This is summed over your 25 shifted positions: total(result, 1)
;In the end you have to substract 1 from each element as the central
position is compared to itself as well and contributes to the sum.

bn = total(b[ixv, iyv] eq b[ix, iy], 1) - 1l

;Location [0, 0] in the bn-array then corresponds to the value for [2,
2] in the b-array, due to the border problem

;Print example to check:
print, bn[0, 0]
print, b[0: 4, 0: 4]

end

=====================code end=====================

I hope it is quicker than your loop.

Michael

Subject: Re: Avoiding FOR loops (version googleplex.infinity)
Posted by MichaelT on Mon, 07 Apr 2008 16:27:11 GMT

Page 4 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5727
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

View Forum Message <> Reply to Message

Oops, now there are line breaks where they should not be and the
comments are no comments any more. So be careful when copying the
code!

Michael

Subject: Re: Avoiding FOR loops (version googleplex.infinity)
Posted by Gaurav on Tue, 08 Apr 2008 05:31:09 GMT
View Forum Message <> Reply to Message

Phew, and here I was thinking that this will turn out one of those too
simple problems that elicit single statement responses.

I also received a reply from Jim Pendleton. I shall try and implement
the two methods and compare their times-taken.

Thanks for saving my nails. ;-)

Gaurav

Subject: Re: Avoiding FOR loops (version googleplex.infinity)
Posted by Gaurav on Tue, 08 Apr 2008 09:41:04 GMT
View Forum Message <> Reply to Message

Unfortunately, Michael's method fails for my array which is quite
large (it being an image). Some of the images are pretty massive (at
around 10k by 10k pixels).

I am still tring to make the best out of Jim's method which somehow
makes use of Convolution and that is supposed to be good. I would love
to hear more responses.

Thank you,

Gaurav

Subject: Re: Avoiding FOR loops (version googleplex.infinity)
Posted by nathan12343 on Tue, 08 Apr 2008 21:33:45 GMT
View Forum Message <> Reply to Message

On Apr 8, 3:41 am, Gaurav <selfishgau...@gmail.com> wrote:
> Unfortunately, Michael's method fails for my array which is quite

Page 5 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26620&goto=59687#msg_59687
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=59687
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5967
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26620&goto=59681#msg_59681
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=59681
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5967
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26620&goto=59677#msg_59677
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=59677
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6167
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26620&goto=59763#msg_59763
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=59763
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> large (it being an image). Some of the images are pretty massive (at
> around 10k by 10k pixels).
>
> I am still tring to make the best out of Jim's method which somehow
> makes use of Convolution and that is supposed to be good. I would love
> to hear more responses.
>
> Thank you,
>
> Gaurav

You can still use Michael's method, you just need to break up the task
into smaller chunks which will fit into memory. You could try doing
it row by row in the image (with a for loop), which should still be
pretty quick.

Subject: Re: Avoiding FOR loops (version googleplex.infinity)
Posted by Tom McGlynn on Wed, 09 Apr 2008 15:18:15 GMT
View Forum Message <> Reply to Message

On Apr 8, 5:41 am, Gaurav <selfishgau...@gmail.com> wrote:
> Unfortunately, Michael's method fails for my array which is quite
> large (it being an image). Some of the images are pretty massive (at
> around 10k by 10k pixels).
>
> I am still tring to make the best out of Jim's method which somehow
> makes use of Convolution and that is supposed to be good. I would love
> to hear more responses.
>
> Thank you,
>
> Gaurav

Dear Guarav,

One thing you might keep in mind is that there is nothing wrong or
necessarily inefficent using for loops. You just need to make sure
that you are doing enough within each loop to amortize the cost of
interpreting the statements. E.g., for the very large images you are
dealing with you might try something as simple as the little (largely
untested) function below. I doubt it's optimal, but it's reasonably
fast for 10Kx10k images (~20 seconds for a 5x5 box). I suspect that a
cleverer algorithm would be able to use the memory cache more
efficiently, but with 100 million comparisons per loop iteration for a
10K image, the loop overhead is not going to be an issue!

Page 6 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6340
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26620&goto=59727#msg_59727
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=59727
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 Regards,
 Tom McGlynn

function comparebox, input, boxsize

 sz = size(input)
 if sz[0] ne 2 then begin
 print,'Input not 2-D array'
 return, 0
 endif

 nx = sz[1]
 ny = sz[2]

 if nx lt boxsize or ny lt boxsize then begin
 print,'Box too large for input'
 endif

 output = intarr(nx,ny)

 offset = boxsize/2
 for i=-offset,offset do begin
 mnx = 0 > (-i)
 mxx = (nx-1) < (nx-1-i)
 for j=-offset,offset do begin
 mny = 0 > (-j)
 mxy = (ny-1) < (ny-1-j)

 if (i ne 0 or j ne 0) then begin
 output(mnx:mxx,mny:mxy) = output(mnx:mxx,mny:mxy)+ $
 (input(mnx:mxx,mny:mxy) eq input(mnx+i:mxx+i, mny+j:mxy
+j))
 endif
 endfor
 endfor
 return, output
end

Subject: Re: Avoiding FOR loops (version googleplex.infinity)
Posted by Gaurav on Thu, 10 Apr 2008 06:13:54 GMT
View Forum Message <> Reply to Message

Dear All,
Over the past two days I was able to think of an algorithm and it
solved my problem. And now, looking at Tom's solution above, it
appears that it is almost the same thing that I came up with.

Page 7 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5967
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26620&goto=59808#msg_59808
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=59808
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

What I did was to pad up my image with kernelSize/2 pixels all around
and then compare it with temporary arrays shifted all around the
kernel by turn. Wherever the shifted array was equal to the padded
array, I added one in the final, output array. Run this loop for the
kernel size and you are done. Now it is up to you guys to decide if it
is exactly the same as Tom's or there is some difference and as to
which would be faster. Here follows my code:

################### Code begin ################################
dims = size(img,/dimensions) ; getting the dimensions of input image
output_img = bytarr(dims(0), dims(1))

kernelSize = 5 ;define the kernel size (here, 5)
padSize = FLOOR(kernelSize /2.0) ;calculate the padding to generate
around the original image
paddedImg = bytarr(dims(0)+2*padSize, dims(1)+2*padSize) ;initialize
the padded image
paddedImg(padSize, padSize) = img ;define the padded image
tempImg = bytarr(dims(0)+2*padSize, dims(1)+2*padSize) ;will contain
the padded, final output

for x = -padSize, padSize do begin
	for y = -padSize, padSize do begin
	if x eq 0 and y eq 0 then continue ;we do not want to compare with
the element itself
	;the x, y loops shift the whole image array around the kernel and
compares the shifted image with the original
	indices = WHERE(paddedImg eq SHIFT(paddedImg, x, y)) ;
	tempImg(indices) = finalImg(indices) + 1 ;increment '1' wherever an
eqality is found
	endfor
endfor
output_img = EXTRAC(tempImg, padSize, padSize, dims(0),
dims(1)) ;extract the output image from the padded output image.
################# end of code/algorithm ####################

In my case it works wonderfully well and speeds things up by a factor
of a few hundred times. Any further optimization would be highly
appreciated.

I guess, I ought to go for a manicure for my gnawed nails now.

Cheers,
Gaurav

Page 8 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

