Subject: Re: efficient comparing 1D and 3D arrays
Posted by Craig Markwardt on Wed, 11 Jun 2008 15:09:25 GMT

View Forum Message <> Reply to Message

Jelle <post@bio-vision.nl> writes:
Hi All,

At the moment | am trying to find pixels that fall within a certain
value range for each pixel, as part of a recursive image exploration
routine.

Say | have the following data:
imgdata = fltarr(NB, NS, NL)
MinVals = fltarr(NB)
MaxVals = fltarr(NB)

Now | would like to efficiently find out
where((imgdata GT MinVals) and (imgdata LT MaxVals))

VVVVVVVVVYVYVYVYVYVYV

There are two possibilities. One is to REFORM/REBIN your MinVals and
MaxVals arrays so they are the same dimension as imgdata, then you can
do your comparison directly.

The other possibility is to make a FOR loop. If NS*NL is large, then
the overhead of the loop should be irrelevant since you are doing many
vector comparisons at each loop step.

Good luck!
Craig

Craig B. Markwardt, Ph.D. EMAIL: craigmnet@ REMOVEcow.physics.wisc.edu
Astrophysics, IDL, Finance, Derivatives | Remove "net" for better response

Subject: Re: efficient comparing 1D and 3D arrays
Posted by Jelle on Wed, 11 Jun 2008 15:46:17 GMT

View Forum Message <> Reply to Message

On Jun 11, 4:09 pm, Craig Markwardt
<craigm...@REMOVEcow.physics.wisc.edu> wrote:
> Jelle <p...@bio-vision.nl> writes:

>> Hi All,

Page 1 of 11 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1763
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26939&goto=60684#msg_60684
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=60684
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6457
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26939&goto=60683#msg_60683
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=60683
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> At the moment | am trying to find pixels that fall within a certain
>> value range for each pixel, as part of a recursive image exploration
>> routine.

>> Say | have the following data:

>> jmgdata = fltarr(NB, NS, NL)
>> MinVals = fltarr(NB)
>> MaxVals = fltarr(NB)

VVVVVVVYVYVYVYVYVYV

vV V. V

Now | would like to efficiently find out
where((imgdata GT MinVals) and (imgdata LT MaxVals))

There are two possibilities. One is to REFORM/REBIN your MinVals and
MaxVals arrays so they are the same dimension as imgdata, then you can
do your comparison directly.

The other possibility is to make a FOR loop. If NS*NL is large, then
the overhead of the loop should be irrelevant since you are doing many
vector comparisons at each loop step.

Good luck!
Craig

Craig B. Markwardt, Ph.D. EMAIL: craigm...@REMOVEcow.physics.wisc.edu
Astrophysics, IDL, Finance, Derivatives | Remove "net" for better response

Hi Craig,

Thank you for your reply. | am struggling a bit with your suggestion..

If | do a rebin on the data, | realize | can do a 'bandwise-
comparison' or an pixel-based comparison, but | could not do a
straight 3D comparison, could I?

[example snip]

; A lot of processing gets a set of boundary pixels, in WorkData.
; Here | compare for each pixel whether the band values fit between
two sets of ranges:

Validl = DoComp(WorkData, Segments[SegmentID].MinVals, 'GE')
Valid2 = DoComp(WorkData, Segments[SegmentID].MaxVals, 'LE")

Page 2 of 11 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

if(validl EQ 1 && valid2 EQ 1) then begin

; Add the pixels to the current segment & rerun routine
endif else begin

; Stop growing, get new seed & start over
endelse

; function to compare two arrays
function DoComp, Arrl, Arr2, Comp, ArrayComp = AC

IF KEYWORD_SET(AC) then begin

; we are performing the array comp with a multidim input array
dims = size(Arrl[*,0], /dimensions)
valid = intarr(dims|[0])

for i=0, dims[0]-1 do begin
valid[i] = DoComp(Arrl[i,*], Arr2, Comp)
endfor

return, valid
endif else begin

case Comp of
'LE": begin
. 1s Arrl LE Arr2
less = where((Arr2-Arrl) LT 0, count)
return, (count) GT0?0:1
end

'GE": begin
less = where((Arrl-Arr2) LT O, count)
return, (count) GT0?0:1
end
endcase

endelse

end

[end example snip]

Basically, | need each band to fall between the limits set for that
band, and know which pixels match that criteria. | was doing it in a

loop, where | compare boundary pixels against the minvals/maxvals. But
as my ROI's get bigger, the number of times you compare the same

Page 3 of 11 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

pixels increases. So | thought I'd do the comparison for the whole
image in one go, keep a binary layer with acceptable / not acceptable
and use that as a masking template.

As this is a new segmentation routine | am designing, the individual
comparison might have to be done 100,000+ times in complex landscapes,
which is why | now would like to take it out of the loop.

Hope you can elaborate a little bit, as | cannot see how to make this
comparison work without looping through all bands and pixels..

cheers,

Jelle

Subject: Re: efficient comparing 1D and 3D arrays
Posted by Jean H. on Wed, 11 Jun 2008 16:37:55 GMT

View Forum Message <> Reply to Message

>>> At the moment | am trying to find pixels that fall within a certain

>>> value range for each pixel, as part of a recursive image exploration

>>> routine.

>>> Say | have the following data:

>>> jmgdata = fltarr(NB, NS, NL)

>>> MinVals = fltarr(NB)

>>> MaxVals = fltarr(NB)

>>> Now | would like to efficiently find out

>>> where((imgdata GT MinVals) and (imgdata LT MaxVals))

>> There are two possibilities. One is to REFORM/REBIN your MinVals and
>> MaxVals arrays so they are the same dimension as imgdata, then you can
>> do your comparison directly.

> If | do a rebin on the data, | realize | can do a 'bandwise-
> comparison' or an pixel-based comparison, but | could not do a
> straight 3D comparison, could 1?

Hi,

Yes you can...do something like:

nb=3

ns=5

ni=5

imgData = fix(randomu(seed,nb,nl,ns)*100) ;--> doing ns,nl,nb makes
more sense than nb,ns,nl... for mental representation at least (and if
you print it!)

minVals = [15,30,12] ;Min val in each band
maxVals = [75,80,60] ;Max val in each band

Page 4 of 11 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5815
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26939&goto=60680#msg_60680
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=60680
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

allMin = rebin(minVals, nb,nl,ns) ;repeat the min band value for every
pixels in each band

allMax = rebin(maxVals, nb,nl,ns)

goodPixels = where(imgData gt allMin and imgData It allMax)

==> returns the indexes of imgData that satisfy the condition in EVERY band.

Jean

Subject: Re: efficient comparing 1D and 3D arrays
Posted by Jelle on Wed, 11 Jun 2008 16:48:24 GMT

View Forum Message <> Reply to Message

On Jun 11, 5:37 pm, Jean H <jghas...@DELTHIS.ucalgary.ANDTHIS.ca>
wrote:

Hi,

Yes you can...do something like:

nb=3

ns=5

ni=5

imgData = fix(randomu(seed,nb,nl,ns)*100) ;--> doing ns,nl,nb makes
more sense than nb,ns,nl... for mental representation at least (and if
you print it!)

minVals = [15,30,12] ;Min val in each band
maxVals = [75,80,60] ;Max val in each band

allMin = rebin(minVals, nb,nl,ns) ;repeat the min band value for every
pixels in each band
allMax = rebin(maxVals, nb,nl,ns)

goodPixels = where(imgData gt allMin and imgData It allMax)

==> returns the indexes of imgData that satisfy the condition in EVERY band.

VVVVVVVVVVVVVVVVYVYVYVYVYV

Jean

cool. I'll harvest some beans in the garden, have dinner, pour a red,
have a potter and let the results of my pottering seep through!

J
PS: Yes dinner.. | am in Europe: Dinner time, 6PM in UK

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6457
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26939&goto=60679#msg_60679
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=60679
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: efficient comparing 1D and 3D arrays
Posted by Jelle on Wed, 11 Jun 2008 17:29:23 GMT

View Forum Message <> Reply to Message

On Jun 11, 5:37 pm, Jean H <jghas...@DELTHIS.ucalgary.ANDTHIS.ca>
wrote:

Hi,

Yes you can...do something like:

minVals = [15,30,12] ;Min val in each band

maxVals = [75,80,60] ;Max val in each band

allMin = rebin(minVals, nb,nl,ns) ;repeat the min band value for every
pixels in each band
allMax = rebin(maxVals, nb,nl,ns)

goodPixels = where(imgData gt allMin and imgData It allMax)

==> returns the indexes of imgData that satisfy the condition in EVERY band.

VVVVVVVYVVYVYVYVYVYV

Jean

:(unfortunately it does not return the indices | was hoping for. It
returns an array with between 0 and 75 elements, for each individual
element. So it tells me for which pixel which band matches. This |
could of course use to calculate the array_indices, subset by only
row/colum indices and reverse back into 1D positional elements, make
uniq() and then create the layer, but | am hoping there is a fell

swoop with which | can do this in one step; a way to create a [ns, nl]
bytearr with 0/1 to match the condition that each band for that bixel
falls within the desired range...

Subject: Re: efficient comparing 1D and 3D arrays
Posted by Jean H. on Wed, 11 Jun 2008 20:46:45 GMT

View Forum Message <> Reply to Message

Jelle wrote:

> OnJun 11, 5:37 pm, Jean H <jghas...@DELTHIS.ucalgary. ANDTHIS.ca>
> wrote:

>> Hi,

>> Yes you can...do something like:

>> minVals =[15,30,12] ;Min val in each band

>> maxVals =[75,80,60] ;Max val in each band

>>

>> allMin = rebin(minVals, nb,nl,ns) ;repeat the min band value for every

Page 6 of 11 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6457
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26939&goto=60678#msg_60678
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=60678
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5815
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26939&goto=60909#msg_60909
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=60909
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> pixels in each band
>> allMax = rebin(maxVals, nb,nl,ns)

>> goodPixels = where(imgData gt allMin and imgData It allMax)
>> ==> returns the indexes of imgData that satisfy the condition in EVERY band.
>> Jean

:(unfortunately it does not return the indices | was hoping for. It
returns an array with between 0 and 75 elements, for each individual
element. So it tells me for which pixel which band matches. This |
could of course use to calculate the array_indices, subset by only
row/colum indices and reverse back into 1D positional elements, make
uniq() and then create the layer, but | am hoping there is a fell

swoop with which | can do this in one step; a way to create a [ns, nl]
bytearr with 0/1 to match the condition that each band for that bixel
falls within the desired range...

VVVVVVYVVVYVYVYVYV

J

Ok, | advise you to read the histogram tutorial on David's website to
fully understand the following:

nb=3
ns=>5
ni=5
imgData = fix(randomu(seed,nb,nl,ns)*100)

minVals = [15,30,12] ;Min val in each band
maxVals = [75,80,60] ;Max val in each band

allMin = rebin(minVals, nb,nl,ns) ;repeat the min band value for every
pixels in each band
allMax = rebin(maxVals, nb,nl,ns)

goodPixelsPerBand = where(imgData gt allMin and imgData It allMax)

tmp = where(histogram(goodPixelsPerBand/nb, min=0, R=ri) eq nb)
;==>make sure nb is an integer, NOT a float!!!

Divide the subscript by NB to "remove" the dimension of the band. Then,
do an histogram on it. If you have NB times an entry, it means these
pixels satisfy the condition in all NB bands. Keep track or the
reverse_indices to find out which entry in goodPixelsPerBand satisfied
the conditions.

Page 7 of 11 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

goodPixels = goodPixelsPerBand[ri[ri[tmp]]]

.get back to the original indices. Since you only query on riftmp], you
will only get the first index in GoodPixelsPerBand that satisfy all
condition (i.e. not the index in every band)...

Now, there might be another solution with total() on goodPixelsPerBand/NB

Jean

Subject: Re: efficient comparing 1D and 3D arrays
Posted by Chris[5] on Wed, 11 Jun 2008 21:24:04 GMT

View Forum Message <> Reply to Message

> | am hoping there is a fell

> swoop with which | can do this in one step; a way to create a [ns, nl]
> pytearr with 0/1 to match the condition that each band for that bixel
> falls within the desired range...

Let me try to understand what you are trying to do:

-data is a datacube of dimensions (nb,ns,nl).

-for each pixel along the first dimension (the one with nb elements),
you want to test whether it is greater than minval and less than
maxval. These are functions of where you are along the first
dimension, so minval and maxval are vectors of length nb.

-you want to create an array, of size ns x nl, such that result[x,y]=1
if data[i,x,y] falls between minval[i] and maxval[i] for all i.

Is this a correct summary? If so, | would recommend:

pro test

data=randomu(seed,nb,ns,nl);just make up data
minval=fltarr(nb)+.1
maxval=fltarr(nb)+.9

;make cubes out of these
minval=rebin(minval,nb,ns,nl)
maxval=rebin(maxval,nb,ns,nl)

print,cube

Page 8 of 11 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6462
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26939&goto=60677#msg_60677
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=60677
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

hit=(data gt minval) and (data It maxval)
result=total(hit,1) eq nb

print,result

end

Explanation:

You turn minval and maxval into cubes such that every pixel in the
data cube needs to be between the corresponding pixels in minval and
maxval. You then do a pixel by pixel test of this, returning the 'hit’

cube (ones and zeros). You only care about cuts through the first
dimension which satisfy your bounds for every pixel along that
dimension. Thus, you sum up the cube along the first dimension
(returning an ns by nl array), and test whether or not it equals nb
(meaning every pixel was a hit).

Aside:

| was doing something similar this weekend, and agree with the earlier
poster about weighing the pros and cons of looping vs large array
creation. If you have lots of pixels, allocating the memory for the
minval and maxval cubes will take some time. Looping through every
pixel in the cube is, of course, a dumb thing to do in idl - it would
rather work with arrays than individual elements. However, if you loop
through each PLANE (say, step along the fist dimension), and then at
each step in the loop analyze a 2D array, you will balance IDL's
efficiency at working with arrays with the time penalty associated

with allocating big chunks of your system memory. | have found (to my
surprise) that this kind of looping can be much, much faster than
avoiding the loop altogether. | am trying to quantitatively understand
this behavior more (there are lots of qualitative descriptions of this
here and on David Fanning's website), but the moral seems to be the
following: IDL's 'sweet spot' is to do operations on arrays as large

as possible, AS LONG AS any memory allocation you need to do to allow
such a procedure is small (say a few percent of the total memory you
have available).

-chris

Subject: Re: efficient comparing 1D and 3D arrays
Posted by Jelle on Wed, 11 Jun 2008 23:05:17 GMT

View Forum Message <> Reply to Message

Hi Chris,

Page 9 of 11 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6457
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26939&goto=60676#msg_60676
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=60676
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Thanks for your reply. You were spot on with summarizing my ramblings

So.. Thinking about this a bit more.. | was wondering about the memory
issues too, as, as you pointed out; allocating memory takes time. And
my images are not super large, but still I am working with an
14*1500*1200 values data array. So possible it might be useful to just
do it over a subset of the image, in sections. Or do it for the area

that is being looked at, with a trigger when the area being looked at
passes a certain size, that | start working in image tiles.

ok, | at least know | am not overlooking an obvious think here.
Vectorizing my routines has never been my forte, so | thought I'd
check before switching the routine on on a real image, and having to
wait for days!

Jelle.

Subject: Re: efficient comparing 1D and 3D arrays
Posted by Jean H. on Wed, 11 Jun 2008 23:21:38 GMT

View Forum Message <> Reply to Message

Jelle wrote:
Hi Chris,

Thanks for your reply. You were spot on with summarizing my ramblings

So.. Thinking about this a bit more.. | was wondering about the memory
issues too, as, as you pointed out; allocating memory takes time. And
my images are not super large, but still | am working with an
14*1500*1200 values data array. So possible it might be useful to just
do it over a subset of the image, in sections. Or do it for the area

that is being looked at, with a trigger when the area being looked at
passes a certain size, that | start working in image tiles.

ok, I at least know | am not overlooking an obvious think here.
Vectorizing my routines has never been my forte, so | thought I'd
check before switching the routine on on a real image, and having to
wait for days!

VVVVVVVVVVVYVVYVVYVYVYV

Jelle.

You said you were applying this under a ROI... one thing you can do it

to use the data only under the ROI, and dismiss the other pixels.

Basically, you will change each band from 2D to 1D (so any shape would

be accommodated). Just keep an index so you can map back your results to
the original image.

Page 10 of 11 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5815
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26939&goto=60908#msg_60908
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=60908
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Jean

Page 11 of 11 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

