Subject: Re: An algorithm puzzle
Posted by David Fanning on Sat, 14 Jun 2008 04:09:36 GMT

View Forum Message <> Reply to Message

Y.T. writes:

I'm currently brute-forcing it with two for-loops where | calculate

the distance between every single element and every single "other"
element and then finding the minimum. Needless to say this takes about
a metric forever and | figured you folks usually have really clever

ideas so I'm throwing this out here to see whether there isn't some
obscure usage of histogram that does exactly what | want...

V VVVYVYV

And I'll steal an IDL T-shirt from the IDL Workbench Seminar
next Tuesday for the first person who's solution runs in
less than, say, 10 seconds! Be sure to specify your size. :-)

Cheers,

David

David Fanning, Ph.D.

Fanning Software Consulting, Inc.

Coyote's Guide to IDL Programming: http://www.dfanning.com/
Sepore ma de ni thui. ("Perhaps thou speakest truth.")

Subject: Re: An algorithm puzzle
Posted by Jonathan Dursi on Sat, 14 Jun 2008 06:09:49 GMT

View Forum Message <> Reply to Message

On Jun 14, 12:09 am, David Fanning <n...@dfanning.com> wrote:

> Y.T. writes:

>> |I'm currently brute-forcing it with two for-loops where | calculate

>> the distance between every single element and every single "other"

>> element and then finding the minimum. Needless to say this takes about
>> a metric forever and | figured you folks usually have really clever

>> ideas so I'm throwing this out here to see whether there isn't some

>> obscure usage of histogram that does exactly what | want...

>
> And I'll steal an IDL T-shirt from the IDL Workbench Seminar
> next Tuesday for the first person who's solution runs in

> less than, say, 10 seconds! Be sure to specify your size. :-)
Ok, 1 won't swear this is 100% yet because it's late, but it's a fun
problem and | wanted to give it a go.

These sorts of shortest-path problems immediately call to mind

Page 1 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26993&goto=60787#msg_60787
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=60787
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5923
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26993&goto=60786#msg_60786
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=60786
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

something

like Dijkstra's algorithm:
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

which is a remarkably simple algorithm for finding the shortest paths

between points in a graph. For these sorts of problems, "greedy"

methods

work really well.

So this is my attempt at an implementation -- the trick here being to
pretend

that all zeros are really just one vertex with lots of neighbors, and
to

proceed from there. This is a really hacky attempt, but seems to
work

at least for the simple cases:

IDL> print, byte(barr)

0O 0OO0O0OOOOOOOODO
0O 0OO0O0OOOOOOOODO
001111111100
001111111100
001111111100
001111111100
001111111100
001111111100
001111111100
001111111100
0O 0O0O0OOOOOOOODO
0O 0O0O0OOOOOOOODO

IDL> dijkstra, barr, rarr

in iter: 1 36 active cells

at end of iter: 1 16 active cells

in iter: 1 16 active cells

at end of iter: 1 4 active cells

in iter: 1 4 active cells

at end of iter: 1 0 active cells

IDL> print, byte(rarr)
0O 0OO0O0OOOOOOOODO
0O 0OO0O0OOOOOOOODO
001111111100
001222222100
001233332100
001234432100
001234432100
001233332100
001222222100

Page 2 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

001111111100
O 00O0OO0OOOOOOOOO
O 0O0O0O0O0OOOOOOOOO

pro dijkstra, barr, rarr
infinity = 1e14

S = size(barr,/dimensions)
rarr = fltarr(s[0]+2,s[1]+2)+1
rarr[1:s[0], 1:s[1]] = barr

rarrfwhere(rarr gt 0)] = infinity

mindneigh = min([[[shift(rarr,1,0)]],[[shift(rarr,-1,0)]],
[[shift(rarr,0,1)]].[[shift(rarr,0,-1)]]],dimension=3)

rarrfwhere((rarr ge infinity) and (min4neigh eq 0))] = 1.

min8neigh = min([[[shift(rarr,1,1)]],[[shift(rarr,-1,1)]],
[[shift(rarr,-1,-1)]],[[shift(rarr,1,-1)]]],dimension=3)

rarrfwhere((rarr ge infinity) and (min8neigh eq 0))] =
sqrt(2.)

iter=1
active = where(rarr ge infinity, nactive)
while (nactive gt 0) do begin
print, 'in iter: ', iter, ': ', nactive,’ active
cells'
min4neigh = min([[[shift(rarr,1,0)]],
[[shift(rarr,-1,0)]],[[shift(rarr,0,2)]],[[shift(rarr,
0,-1)]]],dimension=3)
min8neigh = min([[[shift(rarr,1,1)]],
[[shift(rarr,-1,21)]],[[shift(rarr,-1,-1)]],[[shift(rarr,
1,-1)]]],dimension=3)

newdist = min([[min4neigh[active]+1.],
[min8neigh[active] + sqrt(2.)]],dimension=2)
better = where(newdist It infinity,nbetter)
if (nbetter eq 0) then begin
print, 'Something is horribly wrong --
iteration did nothing'
end else begin
rarr[active] = newdist
end

active = where(rarr ge infinity, nactive)
print, 'at end of iter: ', iter, ": ', nactive,’
active cells’

Page 3 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

endwhile

rarr = rarr[1:s[0],1:s[1]]
return
end

Jonathan
Jonathan Dursi
ljdursi@cita.utoronto.ca
http://www.cita.utoronto.ca

Subject: Re: An algorithm puzzle
Posted by Jelle on Sat, 14 Jun 2008 10:48:07 GMT

View Forum Message <> Reply to Message

David: That is not really fair: | am in the wrong timezone for a 10
sec reply. Anyway.. Size would be european XL, probably a US L?

| think this should do it;
d = MORPH_DISTANCE(P)

(Or, if I have my foreground / background wrong)
d = MORPH_DISTANCE(P, /background)

You will have to decide how distance is calculated using the
NEIGHBOR_SAMPLING keyword, I think you are after 3, which is
approximate euclidian distance.

d = MORPH_DISTANCE(P, neighbor_sampling=3)

Subject: Re: An algorithm puzzle
Posted by Jelle on Sat, 14 Jun 2008 10:54:55 GMT

View Forum Message <> Reply to Message

Read Jelle, Read!

Sorry.. It should RUN in less than 10 sec.
My solution would do it in less than half a sec, | bet.

Subject: Re: An algorithm puzzle
Posted by David Fanning on Sat, 14 Jun 2008 17:36:54 GMT

View Forum Message <> Reply to Message

Page 4 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6457
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26993&goto=60785#msg_60785
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=60785
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6457
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26993&goto=60784#msg_60784
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=60784
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26993&goto=60778#msg_60778
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=60778
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Jelle writes:

David: That is not really fair: | am in the wrong timezone for a 10
sec reply. Anyway.. Size would be european XL, probably a US L?

| think this should do it:
d = MORPH_DISTANCE(P)

(Or, if I have my foreground / background wrong)
d = MORPH_DISTANCE(P, /background)

You will have to decide how distance is calculated using the
NEIGHBOR_SAMPLING keyword, I think you are after 3, which is
approximate euclidian distance.

d = MORPH_DISTANCE(P, neighbor_sampling=3)

VVVVVVVYVYVYVYVYVYV

Well, | guess in setting up the contest we overlooked who
was going to judge the darn thing. :-(

| suppose we are going to have to rely on Y.T. to tell us
which of these solutions worked and how fast they were.

Cheers,

David

David Fanning, Ph.D.

Fanning Software Consulting, Inc.

Coyote's Guide to IDL Programming: http://www.dfanning.com/
Sepore ma de ni thui. ("Perhaps thou speakest truth.")

Subject: Re: An algorithm puzzle
Posted by Y.T. on Mon, 16 Jun 2008 03:13:40 GMT

View Forum Message <> Reply to Message

On Jun 14, 3:48 am, Jelle <p...@bio-vision.nl> wrote:
David: That is not really fair: | am in the wrong timezone for a 10
sec reply. Anyway.. Size would be european XL, probably a US L?

| think this should do it;
d = MORPH_DISTANCE(P)

(Or, if I have my foreground / background wrong)
d = MORPH_DISTANCE(P, /background)

You will have to decide how distance is calculated using the
NEIGHBOR_SAMPLING keyword, I think you are after 3, which is

VVVVVVVYVYVYVYV

Page 5 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5230
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26993&goto=60916#msg_60916
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=60916
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> approximate euclidian distance.
> d = MORPH_DISTANCE(P, neighbor_sampling=3)

Wow - I'm looking for a clever solution and IDL has a built-in. Which
uses a second or something instead of the hour or so I'd been
struggling with.

Thanks for that - the whole group of "morph_" stuff was completely
unknown to me.

(Either of the three neighborhood definitions are probably fine - for
the kinda coarse stuff I've been doing | don't see much difference
between them. I'm going with 3 for now but 1 was giving me perfectly
fine results earlier..)

Thanks again...

Y.T.

Page 6 of 6 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

