
Subject: Re: An algorithm puzzle
Posted by David Fanning on Sat, 14 Jun 2008 04:09:36 GMT
View Forum Message <> Reply to Message

Y.T. writes:

> I'm currently brute-forcing it with two for-loops where I calculate
> the distance between every single element and every single "other"
> element and then finding the minimum. Needless to say this takes about
> a metric forever and I figured you folks usually have really clever
> ideas so I'm throwing this out here to see whether there isn't some
> obscure usage of histogram that does exactly what I want...

And I'll steal an IDL T-shirt from the IDL Workbench Seminar
next Tuesday for the first person who's solution runs in
less than, say, 10 seconds! Be sure to specify your size. :-)

Cheers,

David
--
David Fanning, Ph.D.
Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.dfanning.com/
Sepore ma de ni thui. ("Perhaps thou speakest truth.")

Subject: Re: An algorithm puzzle
Posted by Jonathan Dursi on Sat, 14 Jun 2008 06:09:49 GMT
View Forum Message <> Reply to Message

On Jun 14, 12:09 am, David Fanning <n...@dfanning.com> wrote:
> Y.T. writes:
>> I'm currently brute-forcing it with two for-loops where I calculate
>> the distance between every single element and every single "other"
>> element and then finding the minimum. Needless to say this takes about
>> a metric forever and I figured you folks usually have really clever
>> ideas so I'm throwing this out here to see whether there isn't some
>> obscure usage of histogram that does exactly what I want...
>
> And I'll steal an IDL T-shirt from the IDL Workbench Seminar
> next Tuesday for the first person who's solution runs in
> less than, say, 10 seconds! Be sure to specify your size. :-)

Ok, I won't swear this is 100% yet because it's late, but it's a fun
problem and I wanted to give it a go.

These sorts of shortest-path problems immediately call to mind

Page 1 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26993&goto=60787#msg_60787
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=60787
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5923
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26993&goto=60786#msg_60786
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=60786
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

something
like Dijkstra's algorithm:
 http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
which is a remarkably simple algorithm for finding the shortest paths
between points in a graph. For these sorts of problems, `greedy'
methods
work really well.

So this is my attempt at an implementation -- the trick here being to
pretend
that all zeros are really just one vertex with lots of neighbors, and
to
proceed from there. This is a really hacky attempt, but seems to
work
at least for the simple cases:

IDL> print, byte(barr)
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 1 1 1 1 1 1 1 1 0 0
 0 0 1 1 1 1 1 1 1 1 0 0
 0 0 1 1 1 1 1 1 1 1 0 0
 0 0 1 1 1 1 1 1 1 1 0 0
 0 0 1 1 1 1 1 1 1 1 0 0
 0 0 1 1 1 1 1 1 1 1 0 0
 0 0 1 1 1 1 1 1 1 1 0 0
 0 0 1 1 1 1 1 1 1 1 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0

IDL> dijkstra, barr, rarr
in iter: 1: 36 active cells
at end of iter: 1: 16 active cells
in iter: 1: 16 active cells
at end of iter: 1: 4 active cells
in iter: 1: 4 active cells
at end of iter: 1: 0 active cells

IDL> print, byte(rarr)
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 1 1 1 1 1 1 1 1 0 0
 0 0 1 2 2 2 2 2 2 1 0 0
 0 0 1 2 3 3 3 3 2 1 0 0
 0 0 1 2 3 4 4 3 2 1 0 0
 0 0 1 2 3 4 4 3 2 1 0 0
 0 0 1 2 3 3 3 3 2 1 0 0
 0 0 1 2 2 2 2 2 2 1 0 0

Page 2 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 0 0 1 1 1 1 1 1 1 1 0 0
 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0

pro dijkstra, barr, rarr

 infinity = 1e14

 s = size(barr,/dimensions)
 rarr = fltarr(s[0]+2,s[1]+2)+1
 rarr[1:s[0], 1:s[1]] = barr

 rarr[where(rarr gt 0)] = infinity

 min4neigh = min([[[shift(rarr,1,0)]],[[shift(rarr,-1,0)]],
[[shift(rarr,0,1)]],[[shift(rarr,0,-1)]]],dimension=3)
 rarr[where((rarr ge infinity) and (min4neigh eq 0))] = 1.
 min8neigh = min([[[shift(rarr,1,1)]],[[shift(rarr,-1,1)]],
[[shift(rarr,-1,-1)]],[[shift(rarr,1,-1)]]],dimension=3)
 rarr[where((rarr ge infinity) and (min8neigh eq 0))] =
sqrt(2.)

 iter = 1
 active = where(rarr ge infinity, nactive)
 while (nactive gt 0) do begin
 print, 'in iter: ', iter, ': ', nactive,' active
cells'
 min4neigh = min([[[shift(rarr,1,0)]],
[[shift(rarr,-1,0)]],[[shift(rarr,0,1)]],[[shift(rarr,
0,-1)]]],dimension=3)
 min8neigh = min([[[shift(rarr,1,1)]],
[[shift(rarr,-1,1)]],[[shift(rarr,-1,-1)]],[[shift(rarr,
1,-1)]]],dimension=3)

 newdist = min([[min4neigh[active]+1.],
[min8neigh[active] + sqrt(2.)]],dimension=2)
 better = where(newdist lt infinity,nbetter)
 if (nbetter eq 0) then begin
 print, 'Something is horribly wrong --
iteration did nothing'
 end else begin
 rarr[active] = newdist
 end

 active = where(rarr ge infinity, nactive)
 print, 'at end of iter: ', iter, ': ', nactive,'
active cells'

Page 3 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 endwhile

 rarr = rarr[1:s[0],1:s[1]]
return
end

 Jonathan
--
Jonathan Dursi
ljdursi@cita.utoronto.ca
http://www.cita.utoronto.ca

Subject: Re: An algorithm puzzle
Posted by Jelle on Sat, 14 Jun 2008 10:48:07 GMT
View Forum Message <> Reply to Message

David: That is not really fair: I am in the wrong timezone for a 10
sec reply. Anyway.. Size would be european XL, probably a US L?

I think this should do it:
d = MORPH_DISTANCE(P)

(Or, if I have my foreground / background wrong)
d = MORPH_DISTANCE(P, /background)

You will have to decide how distance is calculated using the
NEIGHBOR_SAMPLING keyword, I think you are after 3, which is
approximate euclidian distance.
d = MORPH_DISTANCE(P, neighbor_sampling=3)

Subject: Re: An algorithm puzzle
Posted by Jelle on Sat, 14 Jun 2008 10:54:55 GMT
View Forum Message <> Reply to Message

Read Jelle, Read!

Sorry.. It should RUN in less than 10 sec.
My solution would do it in less than half a sec, I bet.

Subject: Re: An algorithm puzzle
Posted by David Fanning on Sat, 14 Jun 2008 17:36:54 GMT
View Forum Message <> Reply to Message

Page 4 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6457
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26993&goto=60785#msg_60785
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=60785
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6457
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26993&goto=60784#msg_60784
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=60784
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26993&goto=60778#msg_60778
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=60778
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Jelle writes:

> David: That is not really fair: I am in the wrong timezone for a 10
> sec reply. Anyway.. Size would be european XL, probably a US L?
>
> I think this should do it:
> d = MORPH_DISTANCE(P)
>
> (Or, if I have my foreground / background wrong)
> d = MORPH_DISTANCE(P, /background)
>
> You will have to decide how distance is calculated using the
> NEIGHBOR_SAMPLING keyword, I think you are after 3, which is
> approximate euclidian distance.
> d = MORPH_DISTANCE(P, neighbor_sampling=3)

Well, I guess in setting up the contest we overlooked who
was going to judge the darn thing. :-(

I suppose we are going to have to rely on Y.T. to tell us
which of these solutions worked and how fast they were.

Cheers,

David
--
David Fanning, Ph.D.
Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.dfanning.com/
Sepore ma de ni thui. ("Perhaps thou speakest truth.")

Subject: Re: An algorithm puzzle
Posted by Y.T. on Mon, 16 Jun 2008 03:13:40 GMT
View Forum Message <> Reply to Message

On Jun 14, 3:48 am, Jelle <p...@bio-vision.nl> wrote:
> David: That is not really fair: I am in the wrong timezone for a 10
> sec reply. Anyway.. Size would be european XL, probably a US L?
>
> I think this should do it:
> d = MORPH_DISTANCE(P)
>
> (Or, if I have my foreground / background wrong)
> d = MORPH_DISTANCE(P, /background)
>
> You will have to decide how distance is calculated using the
> NEIGHBOR_SAMPLING keyword, I think you are after 3, which is

Page 5 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5230
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=26993&goto=60916#msg_60916
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=60916
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> approximate euclidian distance.
> d = MORPH_DISTANCE(P, neighbor_sampling=3)

Wow - I'm looking for a clever solution and IDL has a built-in. Which
uses a second or something instead of the hour or so I'd been
struggling with.

Thanks for that - the whole group of "morph_" stuff was completely
unknown to me.

(Either of the three neighborhood definitions are probably fine - for
the kinda coarse stuff I've been doing I don't see much difference
between them. I'm going with 3 for now but 1 was giving me perfectly
fine results earlier..)

Thanks again...

Y.T.

Page 6 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

