
Subject: Re: Finding the Top Two Most Common Coordinates in a
Multi-Dimensional Array
Posted by russell.grew on Tue, 29 Jul 2008 00:43:25 GMT
View Forum Message <> Reply to Message

I think we need more information.

The range that the elements can take would be useful. If, for instance
they are integers between 0 and 10 you could use the where command in
conjunction with the count option to check how many times a given
value occurs.

Hope this helps.

Russell.

Subject: Re: Finding the Top Two Most Common Coordinates in a
Multi-Dimensional Array
Posted by Brian Larsen on Tue, 29 Jul 2008 06:32:21 GMT
View Forum Message <> Reply to Message

We do need some more information but this is just screaming for
histogram. Have a read through http://www.dfanning.com/tips/histogram_tutorial.html
. Using histogram to see which x's are common you can step through
the reverse_indices and see which y's are then common. There is
probably a more graceful way however.

Cheers,

Brian

 -- --------------
Brian Larsen
Boston University
Center for Space Physics
http://people.bu.edu/balarsen/Home/IDL

Subject: Re: Finding the Top Two Most Common Coordinates in a
Multi-Dimensional Array
Posted by Jeremy Bailin on Tue, 29 Jul 2008 15:50:02 GMT
View Forum Message <> Reply to Message

On Jul 29, 2:32 am, Brian Larsen <balar...@gmail.com> wrote:
> We do need some more information but this is just screaming for

Page 1 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5310
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=27329&goto=61765#msg_61765
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=61765
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5775
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=27329&goto=61761#msg_61761
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=61761
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=27329&goto=61748#msg_61748
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=61748
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> histogram. Have a read throughhttp://www.dfanning.com/tips/histogram_tutorial.html
> . Using histogram to see which x's are common you can step through
> the reverse_indices and see which y's are then common. There is
> probably a more graceful way however.
>
> Cheers,
>
> Brian
>
> -- --------------
> Brian Larsen
> Boston University
> Center for Space Physicshttp://people.bu.edu/balarsen/Home/IDL

In particular, if you're dealing with integers that don't span too big
a range, use HIST_2D and find the maximum element. If you've got
floats or a wide range, use UNIQ to turn each into an integer on a
small range first.

-Jeremy.

Subject: Re: Finding the Top Two Most Common Coordinates in a
Multi-Dimensional Array
Posted by Juggernaut on Wed, 30 Jul 2008 11:54:00 GMT
View Forum Message <> Reply to Message

On Jul 29, 11:50 am, Jeremy Bailin <astroco...@gmail.com> wrote:
> On Jul 29, 2:32 am, Brian Larsen <balar...@gmail.com> wrote:
>
>> We do need some more information but this is just screaming for
>> histogram. Have a read throughhttp://www.dfanning.com/tips/histogram_tutorial.html
>> . Using histogram to see which x's are common you can step through
>> the reverse_indices and see which y's are then common. There is
>> probably a more graceful way however.
>
>> Cheers,
>
>> Brian
>
>> -- --------------
>> Brian Larsen
>> Boston University
>> Center for Space Physicshttp://people.bu.edu/balarsen/Home/IDL
>
> In particular, if you're dealing with integers that don't span too big
> a range, use HIST_2D and find the maximum element. If you've got
> floats or a wide range, use UNIQ to turn each into an integer on a

Page 2 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6496
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=27329&goto=61729#msg_61729
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=61729
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> small range first.
>
> -Jeremy.

I think if I were to be working with small datasets....ie not in the
millions of points I would use something like this

coords = [[10,1],[20,32],[5,7],[6,8],[20,32],[2,14],[20,32],[10,10],
[3,1],[21,14]]

counter = intarr(9)

FOR i = 0, 8 DO BEGIN
 FOR j = 0, 8 DO BEGIN

 IF array_equal(coords[*,i],coords[*,j]) THEN counter[i]++

 ENDFOR
ENDFOR

;- Histogram to find the max bins (no need to measure anything below 2
;- because that would just be a single hit and if all of your pairs
;- only occur once then who cares, right?
hist = histogram(counter, min=2, reverse_indices=ri)
maxHist = max(hist, mxpos)
IF maxHist EQ 1 THEN print, 'Each pair occurs no more than once'

;- Use the reverse indices given by histogram to find out exactly
;- where in your counter these maxes are occurring
array_index = (counter[ri[ri[1]:ri[2]-1]])[0]

;- Find where counter is equal to the array index determined by
;- reverse indices
max_index = where(counter EQ array_index)

;- Voila with your max pair
print, coords[*,max_index[0]]

Which spits out....
20 32

This could be tweaked to find the top two or three or whatever as
well.
Hope this helps.

Subject: Re: Finding the Top Two Most Common Coordinates in a

Page 3 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Multi-Dimensional Array
Posted by Juggernaut on Wed, 30 Jul 2008 12:35:43 GMT
View Forum Message <> Reply to Message

On Jul 30, 7:54 am, Bennett <juggernau...@gmail.com> wrote:
> On Jul 29, 11:50 am, Jeremy Bailin <astroco...@gmail.com> wrote:
>
>
>
>> On Jul 29, 2:32 am, Brian Larsen <balar...@gmail.com> wrote:
>
>>> We do need some more information but this is just screaming for
>>> histogram. Have a read throughhttp://www.dfanning.com/tips/histogram_tutorial.html
>>> . Using histogram to see which x's are common you can step through
>>> the reverse_indices and see which y's are then common. There is
>>> probably a more graceful way however.
>
>>> Cheers,
>
>>> Brian
>
>>> -- --------------
>>> Brian Larsen
>>> Boston University
>>> Center for Space Physicshttp://people.bu.edu/balarsen/Home/IDL
>
>> In particular, if you're dealing with integers that don't span too big
>> a range, use HIST_2D and find the maximum element. If you've got
>> floats or a wide range, use UNIQ to turn each into an integer on a
>> small range first.
>
>> -Jeremy.
>
> I think if I were to be working with small datasets....ie not in the
> millions of points I would use something like this
>
> coords = [[10,1],[20,32],[5,7],[6,8],[20,32],[2,14],[20,32],[10,10],
> [3,1],[21,14]]
>
> counter = intarr(9)
>
> FOR i = 0, 8 DO BEGIN
> FOR j = 0, 8 DO BEGIN
>
> IF array_equal(coords[*,i],coords[*,j]) THEN counter[i]++
>
> ENDFOR
> ENDFOR
>

Page 4 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6496
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=27329&goto=61727#msg_61727
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=61727
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> ;- Histogram to find the max bins (no need to measure anything below 2
> ;- because that would just be a single hit and if all of your pairs
> ;- only occur once then who cares, right?
> hist = histogram(counter, min=2, reverse_indices=ri)
> maxHist = max(hist, mxpos)
> IF maxHist EQ 1 THEN print, 'Each pair occurs no more than once'
>
> ;- Use the reverse indices given by histogram to find out exactly
> ;- where in your counter these maxes are occurring
> array_index = (counter[ri[ri[1]:ri[2]-1]])[0]
>
> ;- Find where counter is equal to the array index determined by
> ;- reverse indices
> max_index = where(counter EQ array_index)
>
> ;- Voila with your max pair
> print, coords[*,max_index[0]]
>
> Which spits out....
> 20 32
>
> This could be tweaked to find the top two or three or whatever as
> well.
> Hope this helps.

By the way....you shouldn't hard code these things as you can see
that I've confused everyone by saying there are 9 pairs but there are
actually 10. So replace those hard coded with n_elements(coords[0,*])
or size(coords, /dimensions) to get the correct loop numbers and array
sizes. Still works though.

Subject: Re: Finding the Top Two Most Common Coordinates in a
Multi-Dimensional Array
Posted by Jeremy Bailin on Thu, 31 Jul 2008 11:37:16 GMT
View Forum Message <> Reply to Message

On Jul 30, 7:54 am, Bennett <juggernau...@gmail.com> wrote:
> On Jul 29, 11:50 am, Jeremy Bailin <astroco...@gmail.com> wrote:
>
>
>
>> On Jul 29, 2:32 am, Brian Larsen <balar...@gmail.com> wrote:
>
>>> We do need some more information but this is just screaming for
>>> histogram. Have a read throughhttp://www.dfanning.com/tips/histogram_tutorial.html
>>> . Using histogram to see which x's are common you can step through
>>> the reverse_indices and see which y's are then common. There is

Page 5 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=27329&goto=61795#msg_61795
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=61795
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>> probably a more graceful way however.
>
>>> Cheers,
>
>>> Brian
>
>>> -- --------------
>>> Brian Larsen
>>> Boston University
>>> Center for Space Physicshttp://people.bu.edu/balarsen/Home/IDL
>
>> In particular, if you're dealing with integers that don't span too big
>> a range, use HIST_2D and find the maximum element. If you've got
>> floats or a wide range, use UNIQ to turn each into an integer on a
>> small range first.
>
>> -Jeremy.
>
> I think if I were to be working with small datasets....ie not in the
> millions of points I would use something like this
>
> coords = [[10,1],[20,32],[5,7],[6,8],[20,32],[2,14],[20,32],[10,10],
> [3,1],[21,14]]
>
> counter = intarr(9)
>
> FOR i = 0, 8 DO BEGIN
> FOR j = 0, 8 DO BEGIN
>
> IF array_equal(coords[*,i],coords[*,j]) THEN counter[i]++
>
> ENDFOR
> ENDFOR
>
> ;- Histogram to find the max bins (no need to measure anything below 2
> ;- because that would just be a single hit and if all of your pairs
> ;- only occur once then who cares, right?
> hist = histogram(counter, min=2, reverse_indices=ri)
> maxHist = max(hist, mxpos)
> IF maxHist EQ 1 THEN print, 'Each pair occurs no more than once'
>
> ;- Use the reverse indices given by histogram to find out exactly
> ;- where in your counter these maxes are occurring
> array_index = (counter[ri[ri[1]:ri[2]-1]])[0]
>
> ;- Find where counter is equal to the array index determined by
> ;- reverse indices
> max_index = where(counter EQ array_index)

Page 6 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> ;- Voila with your max pair
> print, coords[*,max_index[0]]
>
> Which spits out....
> 20 32
>
> This could be tweaked to find the top two or three or whatever as
> well.
> Hope this helps.

My version of that would be:

min1=min(coords[0,*], max=max1)
min2=min(coords[1,*], max=max2)
arraymap = hist_2d(coords[0,*], coords[1,*], min1=min1, max1=max1,
bin1=1, min2=min2, max2=max2, bin2=1)
maxval = max(arraymap, maxelement)
print, array_indices([max1-min1+1,max2-min2+1], maxelement, /dimen)+
[min1,min2]

...which avoids loops, and is more obvious to me.

-Jeremy.

Subject: Re: Finding the Top Two Most Common Coordinates in a
Multi-Dimensional Array
Posted by Juggernaut on Thu, 31 Jul 2008 14:50:05 GMT
View Forum Message <> Reply to Message

On Jul 31, 7:37 am, Jeremy Bailin <astroco...@gmail.com> wrote:
> On Jul 30, 7:54 am, Bennett <juggernau...@gmail.com> wrote:
>
>
>
>> On Jul 29, 11:50 am, Jeremy Bailin <astroco...@gmail.com> wrote:
>
>>> On Jul 29, 2:32 am, Brian Larsen <balar...@gmail.com> wrote:
>
>>>> We do need some more information but this is just screaming for
>>>> histogram. Have a read throughhttp://www.dfanning.com/tips/histogram_tutorial.html
>>>> . Using histogram to see which x's are common you can step through
>>>> the reverse_indices and see which y's are then common. There is
>>>> probably a more graceful way however.
>
>>>> Cheers,
>

Page 7 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6496
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=27329&goto=61780#msg_61780
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=61780
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>> Brian
>
>>>> -- --------------
>>>> Brian Larsen
>>>> Boston University
>>>> Center for Space Physicshttp://people.bu.edu/balarsen/Home/IDL
>
>>> In particular, if you're dealing with integers that don't span too big
>>> a range, use HIST_2D and find the maximum element. If you've got
>>> floats or a wide range, use UNIQ to turn each into an integer on a
>>> small range first.
>
>>> -Jeremy.
>
>> I think if I were to be working with small datasets....ie not in the
>> millions of points I would use something like this
>
>> coords = [[10,1],[20,32],[5,7],[6,8],[20,32],[2,14],[20,32],[10,10],
>> [3,1],[21,14]]
>
>> counter = intarr(9)
>
>> FOR i = 0, 8 DO BEGIN
>> FOR j = 0, 8 DO BEGIN
>
>> IF array_equal(coords[*,i],coords[*,j]) THEN counter[i]++
>
>> ENDFOR
>> ENDFOR
>
>> ;- Histogram to find the max bins (no need to measure anything below 2
>> ;- because that would just be a single hit and if all of your pairs
>> ;- only occur once then who cares, right?
>> hist = histogram(counter, min=2, reverse_indices=ri)
>> maxHist = max(hist, mxpos)
>> IF maxHist EQ 1 THEN print, 'Each pair occurs no more than once'
>
>> ;- Use the reverse indices given by histogram to find out exactly
>> ;- where in your counter these maxes are occurring
>> array_index = (counter[ri[ri[1]:ri[2]-1]])[0]
>
>> ;- Find where counter is equal to the array index determined by
>> ;- reverse indices
>> max_index = where(counter EQ array_index)
>
>> ;- Voila with your max pair
>> print, coords[*,max_index[0]]
>

Page 8 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> Which spits out....
>> 20 32
>
>> This could be tweaked to find the top two or three or whatever as
>> well.
>> Hope this helps.
>
> My version of that would be:
>
> min1=min(coords[0,*], max=max1)
> min2=min(coords[1,*], max=max2)
> arraymap = hist_2d(coords[0,*], coords[1,*], min1=min1, max1=max1,
> bin1=1, min2=min2, max2=max2, bin2=1)
> maxval = max(arraymap, maxelement)
> print, array_indices([max1-min1+1,max2-min2+1], maxelement, /dimen)+
> [min1,min2]
>
> ...which avoids loops, and is more obvious to me.
>
> -Jeremy.

No loops is all and good...but if you put a decimal in coords like
this

coords = [[10.0,1.0],[20.0,32.3],[5,7],[6,8],[20.0,32.3],[2,14],
[20.0,32.3],[10,10],[3,1],[21,14]]

your code still spits out (20.0 32.0) where it should spit out (20.0
32.3)
By the way the code I presented up there should have the following
line replaced
 array_index = (counter[ri[ri[1]:ri[2]-1]])[0]
with
 array_index = (counter[ri[ri[mxpos]:ri[mxpos+1]-1]])[0]

Subject: Re: Finding the Top Two Most Common Coordinates in a
Multi-Dimensional Array
Posted by Jeremy Bailin on Fri, 01 Aug 2008 11:02:09 GMT
View Forum Message <> Reply to Message

On Jul 31, 10:50 am, Bennett <juggernau...@gmail.com> wrote:
> On Jul 31, 7:37 am, Jeremy Bailin <astroco...@gmail.com> wrote:
>
>
>
>> On Jul 30, 7:54 am, Bennett <juggernau...@gmail.com> wrote:
>

Page 9 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=27329&goto=61775#msg_61775
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=61775
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>> On Jul 29, 11:50 am, Jeremy Bailin <astroco...@gmail.com> wrote:
>
>>>> On Jul 29, 2:32 am, Brian Larsen <balar...@gmail.com> wrote:
>
>>>> > We do need some more information but this is just screaming for
>>>> > histogram. Have a read throughhttp://www.dfanning.com/tips/histogram_tutorial.html
>>>> > . Using histogram to see which x's are common you can step through
>>>> > the reverse_indices and see which y's are then common. There is
>>>> > probably a more graceful way however.
>
>>>> > Cheers,
>
>>>> > Brian
>
>>>> > -- --------------
>>>> > Brian Larsen
>>>> > Boston University
>>>> > Center for Space Physicshttp://people.bu.edu/balarsen/Home/IDL
>
>>>> In particular, if you're dealing with integers that don't span too big
>>>> a range, use HIST_2D and find the maximum element. If you've got
>>>> floats or a wide range, use UNIQ to turn each into an integer on a
>>>> small range first.
>
>>>> -Jeremy.
>
>>> I think if I were to be working with small datasets....ie not in the
>>> millions of points I would use something like this
>
>>> coords = [[10,1],[20,32],[5,7],[6,8],[20,32],[2,14],[20,32],[10,10],
>>> [3,1],[21,14]]
>
>>> counter = intarr(9)
>
>>> FOR i = 0, 8 DO BEGIN
>>> FOR j = 0, 8 DO BEGIN
>
>>> IF array_equal(coords[*,i],coords[*,j]) THEN counter[i]++
>
>>> ENDFOR
>>> ENDFOR
>
>>> ;- Histogram to find the max bins (no need to measure anything below 2
>>> ;- because that would just be a single hit and if all of your pairs
>>> ;- only occur once then who cares, right?
>>> hist = histogram(counter, min=2, reverse_indices=ri)
>>> maxHist = max(hist, mxpos)
>>> IF maxHist EQ 1 THEN print, 'Each pair occurs no more than once'

Page 10 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>>> ;- Use the reverse indices given by histogram to find out exactly
>>> ;- where in your counter these maxes are occurring
>>> array_index = (counter[ri[ri[1]:ri[2]-1]])[0]
>
>>> ;- Find where counter is equal to the array index determined by
>>> ;- reverse indices
>>> max_index = where(counter EQ array_index)
>
>>> ;- Voila with your max pair
>>> print, coords[*,max_index[0]]
>
>>> Which spits out....
>>> 20 32
>
>>> This could be tweaked to find the top two or three or whatever as
>>> well.
>>> Hope this helps.
>
>> My version of that would be:
>
>> min1=min(coords[0,*], max=max1)
>> min2=min(coords[1,*], max=max2)
>> arraymap = hist_2d(coords[0,*], coords[1,*], min1=min1, max1=max1,
>> bin1=1, min2=min2, max2=max2, bin2=1)
>> maxval = max(arraymap, maxelement)
>> print, array_indices([max1-min1+1,max2-min2+1], maxelement, /dimen)+
>> [min1,min2]
>
>> ...which avoids loops, and is more obvious to me.
>
>> -Jeremy.
>
> No loops is all and good...but if you put a decimal in coords like
> this
>
> coords = [[10.0,1.0],[20.0,32.3],[5,7],[6,8],[20.0,32.3],[2,14],
> [20.0,32.3],[10,10],[3,1],[21,14]]
>
> your code still spits out (20.0 32.0) where it should spit out (20.0
> 32.3)
> By the way the code I presented up there should have the following
> line replaced
> array_index = (counter[ri[ri[1]:ri[2]-1]])[0]
> with
> array_index = (counter[ri[ri[mxpos]:ri[mxpos+1]-1]])[0]

Like I said, if you have floats (or a very large range of integers),

Page 11 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

you should map them into integers first using SORT and UNIQ...

coordsize = size(coords,/dimen)
coords0_sorted = coords[0,sort(coords[0,*])]
map0 = uniq(coords0_sorted)
nmap = n_elements(map0)
new_coords0 = lonarr(coordsize[1])
for i=0l,nmap-1 do new_coords0[where(coords[0,*] eq
coords0_sorted[map0[i]])]=i

...and the same for coords[1,*]. There's probably a more efficient way
of doing that, but you get the idea.

-Jeremy.

Subject: Re: Finding the Top Two Most Common Coordinates in a
Multi-Dimensional Array
Posted by Juggernaut on Tue, 05 Aug 2008 14:14:23 GMT
View Forum Message <> Reply to Message

On Aug 1, 7:02 am, Jeremy Bailin <astroco...@gmail.com> wrote:
> On Jul 31, 10:50 am, Bennett <juggernau...@gmail.com> wrote:
>
>
>
>> On Jul 31, 7:37 am, Jeremy Bailin <astroco...@gmail.com> wrote:
>
>>> On Jul 30, 7:54 am, Bennett <juggernau...@gmail.com> wrote:
>
>>>> On Jul 29, 11:50 am, Jeremy Bailin <astroco...@gmail.com> wrote:
>
>>>> > On Jul 29, 2:32 am, Brian Larsen <balar...@gmail.com> wrote:
>
>>>> > > We do need some more information but this is just screaming for
>>>> > > histogram. Have a read throughhttp://www.dfanning.com/tips/histogram_tutorial.html
>>>> > > . Using histogram to see which x's are common you can step through
>>>> > > the reverse_indices and see which y's are then common. There is
>>>> > > probably a more graceful way however.
>
>>>> > > Cheers,
>
>>>> > > Brian
>
>>>> > > -- --------------
>>>> > > Brian Larsen
>>>> > > Boston University
>>>> > > Center for Space Physicshttp://people.bu.edu/balarsen/Home/IDL

Page 12 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6496
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=27329&goto=61880#msg_61880
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=61880
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>>>> > In particular, if you're dealing with integers that don't span too big
>>>> > a range, use HIST_2D and find the maximum element. If you've got
>>>> > floats or a wide range, use UNIQ to turn each into an integer on a
>>>> > small range first.
>
>>>> > -Jeremy.
>
>>>> I think if I were to be working with small datasets....ie not in the
>>>> millions of points I would use something like this
>
>>>> coords = [[10,1],[20,32],[5,7],[6,8],[20,32],[2,14],[20,32],[10,10],
>>>> [3,1],[21,14]]
>
>>>> counter = intarr(9)
>
>>>> FOR i = 0, 8 DO BEGIN
>>>> FOR j = 0, 8 DO BEGIN
>
>>>> IF array_equal(coords[*,i],coords[*,j]) THEN counter[i]++
>
>>>> ENDFOR
>>>> ENDFOR
>
>>>> ;- Histogram to find the max bins (no need to measure anything below 2
>>>> ;- because that would just be a single hit and if all of your pairs
>>>> ;- only occur once then who cares, right?
>>>> hist = histogram(counter, min=2, reverse_indices=ri)
>>>> maxHist = max(hist, mxpos)
>>>> IF maxHist EQ 1 THEN print, 'Each pair occurs no more than once'
>
>>>> ;- Use the reverse indices given by histogram to find out exactly
>>>> ;- where in your counter these maxes are occurring
>>>> array_index = (counter[ri[ri[1]:ri[2]-1]])[0]
>
>>>> ;- Find where counter is equal to the array index determined by
>>>> ;- reverse indices
>>>> max_index = where(counter EQ array_index)
>
>>>> ;- Voila with your max pair
>>>> print, coords[*,max_index[0]]
>
>>>> Which spits out....
>>>> 20 32
>
>>>> This could be tweaked to find the top two or three or whatever as
>>>> well.
>>>> Hope this helps.

Page 13 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>>> My version of that would be:
>
>>> min1=min(coords[0,*], max=max1)
>>> min2=min(coords[1,*], max=max2)
>>> arraymap = hist_2d(coords[0,*], coords[1,*], min1=min1, max1=max1,
>>> bin1=1, min2=min2, max2=max2, bin2=1)
>>> maxval = max(arraymap, maxelement)
>>> print, array_indices([max1-min1+1,max2-min2+1], maxelement, /dimen)+
>>> [min1,min2]
>
>>> ...which avoids loops, and is more obvious to me.
>
>>> -Jeremy.
>
>> No loops is all and good...but if you put a decimal in coords like
>> this
>
>> coords = [[10.0,1.0],[20.0,32.3],[5,7],[6,8],[20.0,32.3],[2,14],
>> [20.0,32.3],[10,10],[3,1],[21,14]]
>
>> your code still spits out (20.0 32.0) where it should spit out (20.0
>> 32.3)
>> By the way the code I presented up there should have the following
>> line replaced
>> array_index = (counter[ri[ri[1]:ri[2]-1]])[0]
>> with
>> array_index = (counter[ri[ri[mxpos]:ri[mxpos+1]-1]])[0]
>
> Like I said, if you have floats (or a very large range of integers),
> you should map them into integers first using SORT and UNIQ...
>
> coordsize = size(coords,/dimen)
> coords0_sorted = coords[0,sort(coords[0,*])]
> map0 = uniq(coords0_sorted)
> nmap = n_elements(map0)
> new_coords0 = lonarr(coordsize[1])
> for i=0l,nmap-1 do new_coords0[where(coords[0,*] eq
> coords0_sorted[map0[i]])]=i
>
> ...and the same for coords[1,*]. There's probably a more efficient way
> of doing that, but you get the idea.
>
> -Jeremy.

coords = [[10.0,1.0],[20.0,32.3],[5,7],[6,8],[20.0,32.3],[2,14],
[20.0,32.3],[10,10],[3,1],[21,14]]

Page 14 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

sz = size(coords, /dimensions)

result = rebin(coords,2,sz[1],sz[1])
result2 = rebin(reform(coords,2,1,sz[1]),2,sz[1],sz[1])
indices = array_indices(result/result2,where(result/result2 EQ 1))

hist = histogram(indices[2,*])
maxHist = max(hist, mxpos)

print, coords[*,mxpos]

No loops...but definitely limited by size...can't really go with more
than a 7500 indices

Subject: Re: Finding the Top Two Most Common Coordinates in a
Multi-Dimensional Array
Posted by Jeremy Bailin on Wed, 06 Aug 2008 11:28:00 GMT
View Forum Message <> Reply to Message

On Aug 5, 10:14 am, Bennett <juggernau...@gmail.com> wrote:
> On Aug 1, 7:02 am, Jeremy Bailin <astroco...@gmail.com> wrote:
>
>
>
>> On Jul 31, 10:50 am, Bennett <juggernau...@gmail.com> wrote:
>
>>> On Jul 31, 7:37 am, Jeremy Bailin <astroco...@gmail.com> wrote:
>
>>>> On Jul 30, 7:54 am, Bennett <juggernau...@gmail.com> wrote:
>
>>>> > On Jul 29, 11:50 am, Jeremy Bailin <astroco...@gmail.com> wrote:
>
>>>> > > On Jul 29, 2:32 am, Brian Larsen <balar...@gmail.com> wrote:
>
>>>> > > > We do need some more information but this is just screaming for
>>>> > > > histogram. Have a read
throughhttp://www.dfanning.com/tips/histogram_tutorial.html
>>>> > > > . Using histogram to see which x's are common you can step through
>>>> > > > the reverse_indices and see which y's are then common. There is
>>>> > > > probably a more graceful way however.
>
>>>> > > > Cheers,
>
>>>> > > > Brian
>
>>>> > > > -- --------------
>>>> > > > Brian Larsen

Page 15 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=27329&goto=61875#msg_61875
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=61875
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>> > > > Boston University
>>>> > > > Center for Space Physicshttp://people.bu.edu/balarsen/Home/IDL
>
>>>> > > In particular, if you're dealing with integers that don't span too big
>>>> > > a range, use HIST_2D and find the maximum element. If you've got
>>>> > > floats or a wide range, use UNIQ to turn each into an integer on a
>>>> > > small range first.
>
>>>> > > -Jeremy.
>
>>>> > I think if I were to be working with small datasets....ie not in the
>>>> > millions of points I would use something like this
>
>>>> > coords = [[10,1],[20,32],[5,7],[6,8],[20,32],[2,14],[20,32],[10,10],
>>>> > [3,1],[21,14]]
>
>>>> > counter = intarr(9)
>
>>>> > FOR i = 0, 8 DO BEGIN
>>>> > FOR j = 0, 8 DO BEGIN
>
>>>> > IF array_equal(coords[*,i],coords[*,j]) THEN counter[i]++
>
>>>> > ENDFOR
>>>> > ENDFOR
>
>>>> > ;- Histogram to find the max bins (no need to measure anything below 2
>>>> > ;- because that would just be a single hit and if all of your pairs
>>>> > ;- only occur once then who cares, right?
>>>> > hist = histogram(counter, min=2, reverse_indices=ri)
>>>> > maxHist = max(hist, mxpos)
>>>> > IF maxHist EQ 1 THEN print, 'Each pair occurs no more than once'
>
>>>> > ;- Use the reverse indices given by histogram to find out exactly
>>>> > ;- where in your counter these maxes are occurring
>>>> > array_index = (counter[ri[ri[1]:ri[2]-1]])[0]
>
>>>> > ;- Find where counter is equal to the array index determined by
>>>> > ;- reverse indices
>>>> > max_index = where(counter EQ array_index)
>
>>>> > ;- Voila with your max pair
>>>> > print, coords[*,max_index[0]]
>
>>>> > Which spits out....
>>>> > 20 32
>
>>>> > This could be tweaked to find the top two or three or whatever as

Page 16 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>> > well.
>>>> > Hope this helps.
>
>>>> My version of that would be:
>
>>>> min1=min(coords[0,*], max=max1)
>>>> min2=min(coords[1,*], max=max2)
>>>> arraymap = hist_2d(coords[0,*], coords[1,*], min1=min1, max1=max1,
>>>> bin1=1, min2=min2, max2=max2, bin2=1)
>>>> maxval = max(arraymap, maxelement)
>>>> print, array_indices([max1-min1+1,max2-min2+1], maxelement, /dimen)+
>>>> [min1,min2]
>
>>>> ...which avoids loops, and is more obvious to me.
>
>>>> -Jeremy.
>
>>> No loops is all and good...but if you put a decimal in coords like
>>> this
>
>>> coords = [[10.0,1.0],[20.0,32.3],[5,7],[6,8],[20.0,32.3],[2,14],
>>> [20.0,32.3],[10,10],[3,1],[21,14]]
>
>>> your code still spits out (20.0 32.0) where it should spit out (20.0
>>> 32.3)
>>> By the way the code I presented up there should have the following
>>> line replaced
>>> array_index = (counter[ri[ri[1]:ri[2]-1]])[0]
>>> with
>>> array_index = (counter[ri[ri[mxpos]:ri[mxpos+1]-1]])[0]
>
>> Like I said, if you have floats (or a very large range of integers),
>> you should map them into integers first using SORT and UNIQ...
>
>> coordsize = size(coords,/dimen)
>> coords0_sorted = coords[0,sort(coords[0,*])]
>> map0 = uniq(coords0_sorted)
>> nmap = n_elements(map0)
>> new_coords0 = lonarr(coordsize[1])
>> for i=0l,nmap-1 do new_coords0[where(coords[0,*] eq
>> coords0_sorted[map0[i]])]=i
>
>> ...and the same for coords[1,*]. There's probably a more efficient way
>> of doing that, but you get the idea.
>
>> -Jeremy.
>
> coords = [[10.0,1.0],[20.0,32.3],[5,7],[6,8],[20.0,32.3],[2,14],

Page 17 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> [20.0,32.3],[10,10],[3,1],[21,14]]
>
> sz = size(coords, /dimensions)
>
> result = rebin(coords,2,sz[1],sz[1])
> result2 = rebin(reform(coords,2,1,sz[1]),2,sz[1],sz[1])
> indices = array_indices(result/result2,where(result/result2 EQ 1))
>
> hist = histogram(indices[2,*])
> maxHist = max(hist, mxpos)
>
> print, coords[*,mxpos]
>
> No loops...but definitely limited by size...can't really go with more
> than a 7500 indices

That doesn't work if you have individual elements that come up much
more often than elements in the most frequent pair... I fooled it with
this input:

coords = [[10.0,1.0],[20.0,32.3],[5,7],[6,8],[20.0,32.3],[2,14], $
 [20.0,32.3],[10,10],[3,1],[21,14],[10.0,32.3],[10.0,8]]

and it comes up with [10.0,32.3].

-Jeremy.

Subject: Re: Finding the Top Two Most Common Coordinates in a
Multi-Dimensional Array
Posted by Juggernaut on Thu, 07 Aug 2008 13:21:26 GMT
View Forum Message <> Reply to Message

On Aug 6, 7:28 am, Jeremy Bailin <astroco...@gmail.com> wrote:
> On Aug 5, 10:14 am, Bennett <juggernau...@gmail.com> wrote:
>
>
>
>> On Aug 1, 7:02 am, Jeremy Bailin <astroco...@gmail.com> wrote:
>
>>> On Jul 31, 10:50 am, Bennett <juggernau...@gmail.com> wrote:
>
>>>> On Jul 31, 7:37 am, Jeremy Bailin <astroco...@gmail.com> wrote:
>
>>>> > On Jul 30, 7:54 am, Bennett <juggernau...@gmail.com> wrote:
>
>>>> > > On Jul 29, 11:50 am, Jeremy Bailin <astroco...@gmail.com> wrote:
>

Page 18 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6496
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=27329&goto=61865#msg_61865
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=61865
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>> > > > On Jul 29, 2:32 am, Brian Larsen <balar...@gmail.com> wrote:
>
>>>> > > > > We do need some more information but this is just screaming for
>>>> > > > > histogram. Have a read
throughhttp://www.dfanning.com/tips/histogram_tutorial.html
>>>> > > > > . Using histogram to see which x's are common you can step through
>>>> > > > > the reverse_indices and see which y's are then common. There is
>>>> > > > > probably a more graceful way however.
>
>>>> > > > > Cheers,
>
>>>> > > > > Brian
>
>>>> > > > > -- --------------
>>>> > > > > Brian Larsen
>>>> > > > > Boston University
>>>> > > > > Center for Space Physicshttp://people.bu.edu/balarsen/Home/IDL
>
>>>> > > > In particular, if you're dealing with integers that don't span too big
>>>> > > > a range, use HIST_2D and find the maximum element. If you've got
>>>> > > > floats or a wide range, use UNIQ to turn each into an integer on a
>>>> > > > small range first.
>
>>>> > > > -Jeremy.
>
>>>> > > I think if I were to be working with small datasets....ie not in the
>>>> > > millions of points I would use something like this
>
>>>> > > coords = [[10,1],[20,32],[5,7],[6,8],[20,32],[2,14],[20,32],[10,10],
>>>> > > [3,1],[21,14]]
>
>>>> > > counter = intarr(9)
>
>>>> > > FOR i = 0, 8 DO BEGIN
>>>> > > FOR j = 0, 8 DO BEGIN
>
>>>> > > IF array_equal(coords[*,i],coords[*,j]) THEN counter[i]++
>
>>>> > > ENDFOR
>>>> > > ENDFOR
>
>>>> > > ;- Histogram to find the max bins (no need to measure anything below 2
>>>> > > ;- because that would just be a single hit and if all of your pairs
>>>> > > ;- only occur once then who cares, right?
>>>> > > hist = histogram(counter, min=2, reverse_indices=ri)
>>>> > > maxHist = max(hist, mxpos)
>>>> > > IF maxHist EQ 1 THEN print, 'Each pair occurs no more than once'
>

Page 19 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>> > > ;- Use the reverse indices given by histogram to find out exactly
>>>> > > ;- where in your counter these maxes are occurring
>>>> > > array_index = (counter[ri[ri[1]:ri[2]-1]])[0]
>
>>>> > > ;- Find where counter is equal to the array index determined by
>>>> > > ;- reverse indices
>>>> > > max_index = where(counter EQ array_index)
>
>>>> > > ;- Voila with your max pair
>>>> > > print, coords[*,max_index[0]]
>
>>>> > > Which spits out....
>>>> > > 20 32
>
>>>> > > This could be tweaked to find the top two or three or whatever as
>>>> > > well.
>>>> > > Hope this helps.
>
>>>> > My version of that would be:
>
>>>> > min1=min(coords[0,*], max=max1)
>>>> > min2=min(coords[1,*], max=max2)
>>>> > arraymap = hist_2d(coords[0,*], coords[1,*], min1=min1, max1=max1,
>>>> > bin1=1, min2=min2, max2=max2, bin2=1)
>>>> > maxval = max(arraymap, maxelement)
>>>> > print, array_indices([max1-min1+1,max2-min2+1], maxelement, /dimen)+
>>>> > [min1,min2]
>
>>>> > ...which avoids loops, and is more obvious to me.
>
>>>> > -Jeremy.
>
>>>> No loops is all and good...but if you put a decimal in coords like
>>>> this
>
>>>> coords = [[10.0,1.0],[20.0,32.3],[5,7],[6,8],[20.0,32.3],[2,14],
>>>> [20.0,32.3],[10,10],[3,1],[21,14]]
>
>>>> your code still spits out (20.0 32.0) where it should spit out (20.0
>>>> 32.3)
>>>> By the way the code I presented up there should have the following
>>>> line replaced
>>>> array_index = (counter[ri[ri[1]:ri[2]-1]])[0]
>>>> with
>>>> array_index = (counter[ri[ri[mxpos]:ri[mxpos+1]-1]])[0]
>
>>> Like I said, if you have floats (or a very large range of integers),
>>> you should map them into integers first using SORT and UNIQ...

Page 20 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>>> coordsize = size(coords,/dimen)
>>> coords0_sorted = coords[0,sort(coords[0,*])]
>>> map0 = uniq(coords0_sorted)
>>> nmap = n_elements(map0)
>>> new_coords0 = lonarr(coordsize[1])
>>> for i=0l,nmap-1 do new_coords0[where(coords[0,*] eq
>>> coords0_sorted[map0[i]])]=i
>
>>> ...and the same for coords[1,*]. There's probably a more efficient way
>>> of doing that, but you get the idea.
>
>>> -Jeremy.
>
>> coords = [[10.0,1.0],[20.0,32.3],[5,7],[6,8],[20.0,32.3],[2,14],
>> [20.0,32.3],[10,10],[3,1],[21,14]]
>
>> sz = size(coords, /dimensions)
>
>> result = rebin(coords,2,sz[1],sz[1])
>> result2 = rebin(reform(coords,2,1,sz[1]),2,sz[1],sz[1])
>> indices = array_indices(result/result2,where(result/result2 EQ 1))
>
>> hist = histogram(indices[2,*])
>> maxHist = max(hist, mxpos)
>
>> print, coords[*,mxpos]
>
>> No loops...but definitely limited by size...can't really go with more
>> than a 7500 indices
>
> That doesn't work if you have individual elements that come up much
> more often than elements in the most frequent pair... I fooled it with
> this input:
>
> coords = [[10.0,1.0],[20.0,32.3],[5,7],[6,8],[20.0,32.3],[2,14], $
> [20.0,32.3],[10,10],[3,1],[21,14],[10.0,32.3],[10.0,8]]
>
> and it comes up with [10.0,32.3].
>
> -Jeremy.

Dang it...well I had to give it a go.

Page 21 of 21 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

