Subject: Need a function to multiply the elements of an array Posted by barsam on Wed, 26 Apr 1995 07:00:00 GMT

View Forum Message <> Reply to Message

Hi,

I am looking for a routine to multiply the elements of an array. Is there a faster way of doing it than the following?

```
function prod, x
n = n elements(x)-1
z = 1.d0
for i = 0, n do z = z * x(i)
return, z
end
```

BM

Subject: Re: Need a function to multiply the elements of an array Posted by isaacman on Fri, 28 Apr 1995 07:00:00 GMT View Forum Message <> Reply to Message

In article <adorf-2704951634260001@st53.hq.eso.org> adorf@eso.org (Hans-Martin Adorf) writes:

- > In article <3nm2uk\$qqq@pinot.umd.edu>, barsam@Glue.umd.edu (Barsam
- >> I am looking for a routine to multiply the elements of an array.

```
> You can try
> z = \exp(total(alog(x)))
```

Cute, but there better not be any negative or zero elements in x!

Rich Isaacman General Sciences Corp.

Subject: Re: Need a function to multiply the elements of an array Posted by chase on Fri, 28 Apr 1995 07:00:00 GMT View Forum Message <> Reply to Message

>>>> "Rick" == Rick White <rlw@sundog.stsci.edu> writes:

In article <3nr9e0\$2dp@sundog.stsci.edu> rlw@sundog.stsci.edu (Rick White) writes:

Rick> In article <3nm2uk\$qqq@pinot.umd.edu>, barsam@Glue.umd.edu (Barsam Marasli) writes:

Rick> |> I am looking for a routine to multiply the elements of an array.

Rick> Here is one more approach for this problem. I did some tests and found Rick> it to be roughly the same speed as the previous approaches (using logarithms) Rick> for short vectors (< 100 elements), but it is faster by about a factor Rick> of 3 for long vectors. It is about 15 times faster than a direct loop

Rick> for long vectors.

It would be nice if IDL had the equivalent of the Scan operator in the APL language. This is equivalent to partial sums for a vector using an arbitrary binary operator (+, x, min, max, etc.).

A related recursive operation that I have wanted on occasion is an auto-regressive (AR) filter. IDL can easily implement moving-average filters (via convol) but it does not have an efficient function for impelmenting AR (or ARMA) filters. The most useful generalization of this would be implementations of multi-input, multi-output linear time-invariant (or time-varying) state space equations like those in the matlab signal processing and image processing packages.

Native functions for these types of operations would be an order of magnitude faster over IDL loop implementations.

Just wishing, Chris

Bldg 24-E188
The Applied Physics Laboratory
The Johns Hopkins University
Laurel, MD 20723-6099
(301)953-6000 x8529
chris.chase@jhuapl.edu

Subject: Re: Need a function to multiply the elements of an array Posted by VUKOVIC on Fri, 28 Apr 1995 07:00:00 GMT

View Forum Message <> Reply to Message

In <3nohst\$sun@pinot.umd.edu% barsam@Glue.umd.edu writes:

% In article <3nm2uk\$qqq@pinot.umd.edu%,

% I wrote:

% %

```
% %Hi,
% %
% %I am looking for a routine to multiply the elements of an array.
% % Is there a faster way of doing it than the following?
% %
% %
% %function prod, x
% \text{ } % n = n_elements(x)-1
% %z = 1.d0
% % for i = 0, n do z = z * x(i)
% %return. z
% %end
% %
% %
% %
% %BM
% %
%
% Thanks for the replies.
%
% z = \exp(total(alog(x))) gives me about 60% savings. Not terribly
% fast but obviously better than the "for" loop.
%
% BM
%
That is strange (or I am strange), but I would think naively
expect that in the "for" loop you have only N multiplications, while
```

That is strange (or I am strange), but I would think naively expect that in the "for" loop you have only N multiplications, while taking log of each number gives you M*N multiplications, where M is the number of multiplications used to evaluate the log of a number.

I guess if going for speed, it would be fairly simple to write a fortran/c routine to do it

Mirko

```
Mirko Vukovic | vukovic@uwmfe.neep.wisc.edu
Dept. of Nucl. Eng. and Eng. Phys. | mvukovic@wiscmacc.bitnet
U of Wisconsin -- Madison | phone: (608) 265-4069
1500 Johnson Drive; Madison WI 53706| fax: (608) 265-2364
```

Subject: Re: Need a function to multiply the elements of an array Posted by rlw on Fri, 28 Apr 1995 07:00:00 GMT

View Forum Message <> Reply to Message

In article <3nm2uk\$qqq@pinot.umd.edu>, barsam@Glue.umd.edu (Barsam Marasli) writes:

> I am looking for a routine to multiply the elements of an array.

Here is one more approach for this problem. I did some tests and found it to be roughly the same speed as the previous approaches (using logarithms) for short vectors (< 100 elements), but it is faster by about a factor of 3 for long vectors. It is about 15 times faster than a direct loop for long vectors.

```
function prod,x
; Compute product of elements of x. Returns result as double.
; R. White, 1995 April 28
n = n elements(x)
y = double(x)
mm = 1.0d0
; takes about log3(n) passes through this loop
; 20 elements is about the right break point where the direct loop becomes
: fastest
while (n GT 20) do begin
 mval = n MOD 3
 if mval eq 1 then begin
 mm = mm*y(n-1)
 endif else if mval eq 2 then begin
 mm = mm*y(n-1)*y(n-2)
 endif
 n = n/3
 y = y(0:n-1)*y(n:2*n-1)*y(2*n:3*n-1)
endwhile
for i=0,n-1 do mm=mm*y(i)
return, mm
end
```

Subject: Re: Need a function to multiply the elements of an array Posted by VUKOVIC on Mon, 01 May 1995 07:00:00 GMT View Forum Message <> Reply to Message

In <CHASE.95Apr28164307@retro.jhuapl.edu> chase@retro.jhuapl.edu writes:

- > A related recursive operation that I have wanted on occasion is an
- > auto-regressive (AR) filter. IDL can easily implement moving-average
- > filters (via convol) but it does not have an efficient function for
- > impelmenting AR (or ARMA) filters. The most useful generalization of

yesss!

and since we are on the topic of arrays etc, it would be nice to have a symbol that points to the last element of the array

mirko

Mirko Vukovic | vukovic@uwmfe.neep.wisc.edu Dept. of Nucl. Eng. and Eng. Phys. | mvukovic@wiscmacc.bitnet U of Wisconsin -- Madison | phone: (608) 265-4069 1500 Johnson Drive; Madison WI 53706| fax: (608) 265-2364