Subject: Large Numbers Posted by David Fanning on Fri, 06 Feb 2009 23:12:12 GMT View Forum Message <> Reply to Message

Folks,

I made a big mistake and signed up for an Applied Statistics class this semester. Now I pretty much spend every free waking moment doing stats homework. :-(

Anyway, for lunch today I decided to grab a sandwich and give my youngest some support by calculating how many girls he had to ask out to have an 80% chance of getting a date for Saturday night.

I made some conservative assumptions (I learned later my ideas about the college social scene apply more to the 1970s than they do to today), and off I went writing a couple of short IDL programs to do the calculations for the Binomial and Geometry Distributions, etc. All pretty straightforward.

But then I started getting screwy results. (This, in itself, is not all that unusual in this particular class. In fact, I've begun to consider it something of a minor miracle if I'm within an order of magnitude of the right answer.) But even I know that negative probabilities don't show up until the second semester. What in the world!?

It turns out that the recursive function I naively wrote to process a factorial calculation was overflowing my long integers, even with a simple calculation like 20! (twenty factorial). Yowser!

Now, of course, the formula I was using has a large factorial number divided by another large factorial number, so the *actual* number I wanted to use in the calculation is not that big. But it begs the question: what strategy do computer scientists use to deal with one very, very big number divided by another very, very big number?

I've solved my immediate problem for my little toy problem by using LONG64 variables. But this can't be the right solution. Does anyone know?

Cheers.

David

--

David Fanning, Ph.D.
Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.dfanning.com/
Sepore ma de ni thui. ("Perhaps thou speakest truth.")