Subject: Q: Efficient Memory handling and deallocation
Posted by rutledge on Thu, 04 May 1995 07:00:00 GMT

View Forum Message <> Reply to Message

| handle quite a bit of data, and | have been using the "save" and
"restore” routines to manage them. It seems that IDL takes quite

a bit of time to deallocate a variable when a new one is read in over it
(I create a huge data structure, and "save" it, to be "restored" later).
Further, it seems that after | have dealt with the data in the variable,
and | would like to deallocate it (by setting the variable=0), the memory
does not get freed up.

Suggestions?

Bob

Subject: Re: Q: Efficient Memory handling and deallocation
Posted by Paul Probert on Thu, 04 May 1995 07:00:00 GMT

View Forum Message <> Reply to Message

rutledge@hoshi.mit.edu (Bob Rutledge) wrote:

>

>

> | handle quite a bit of data, and | have been using the "save" and

> "restore"” routines to manage them. It seems that IDL takes quite
> a bit of time to deallocate a variable when a new one is read in over it
> (I create a huge data structure, and "save" it, to be "restored" later).
> Further, it seems that after | have dealt with the data in the variable,
> and | would like to deallocate it (by setting the variable=0), the
memory

> does not get freed up.

>

> Suggestions?

>

> Bob

We've had that problem, and if your program iterates through the "create,
do something, delete" cycle a few times you run out of memory, because
the "do something" step inevitably allocates a few more bytes, and these
come from the hole left by the previous delete. So on the next create
you don't have a large enough contiguous block of memory. We brought
this up with the support people at IDL, and they said it was the

operating system's fault. But we figured out, as you did, that IDL

doesn't deallocate the memory. One workaround is, at the beginning of
your program, create and then immediately delete an array 2 or 3 times
the size of your needs, and this will leave a hole big enough for many
future reallocations.

Page 1 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=996
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=2834&goto=4107#msg_4107
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=4107
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=998
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=2834&goto=4109#msg_4109
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=4109
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Another technique is to give up modular programming and do everything in
one big main program and never deallocate. But | would really like the
people at RSI to read these complaints and fix IDL.

Paul Probert, University of Wisconsin probert@uwmfe.neep.wisc.edu

Subject: Re: Q: Efficient Memory handling and deallocation
Posted by rutledge on Fri, 05 May 1995 07:00:00 GMT

View Forum Message <> Reply to Message

In article <D82wnn.K29@hpl.hp.com>, peter@hpl.hp.com (Peter Webb) writes:
>

> Would a C program, using malloc(), perform any differently? That is, if

> | had a program that malloc'ed a big block, then free'd it, then

> malloc'ed a little block, then started over, would | see the same

> behavior as | see from IDL?
>
>
>
>

If there is no difference, then it really is an OS problem/feature, and
RSI would have to add their own memory management. If not, then maybe
RSI could do something about it.

Most definitely in SunOS, free() results in de-allocating memory from the
program heap, making it available to other users. | have been unable to

get my applications to do this, and it causes major slowing down of programs
for me (for instance, | need at one point, LOTS of data, which gets sorted
out, and binned, after which | de-allocate it, but then -- | get stuck paging
through this later because the 100M | allocated is still in the heap, even
though | de-allocated it).

Paul Probert (probert@uwmfe.neep.wisc.edu) wrote:

: But we figured out, as you did, that IDL

: doesn't deallocate the memory. One workaround is, at the beginning of
. your program, create and then immediately delete an array 2 or 3 times
: the size of your needs, and this will leave a hole big enough for many

: future reallocations.

True enough, but my problem is that | want the heap to be freed, so that |
don't have to page through at 150M heap (when my computer only has 96M).
Any suggestions?

Bob

Subject: Re: Q: Efficient Memory handling and deallocation
Posted by peter on Fri, 05 May 1995 07:00:00 GMT

Page 2 of 3 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=996
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=2834&goto=4197#msg_4197
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=4197
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=507
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

View Forum Message <> Reply to Message

Paul Probert (probert@uwmfe.neep.wisc.edu) wrote:

: We've had that problem, and if your program iterates through the "create,
: do something, delete" cycle a few times you run out of memory, because
: the "do something" step inevitably allocates a few more bytes, and these

: come from the hole left by the previous delete. So on the next create

: you don't have a large enough contiguous block of memory. We brought
: this up with the support people at IDL, and they said it was the

. operating system's fault. But we figured out, as you did, that IDL

: doesn't deallocate the memory. One workaround is, at the beginning of

: your program, create and then immediately delete an array 2 or 3 times

: the size of your needs, and this will leave a hole big enough for many

: future reallocations.

: Another technique is to give up modular programming and do everything in
: one big main program and never deallocate. But | would really like the
: people at RSI to read these complaints and fix IDL.

Would a C program, using malloc(), perform any differently? That is, if
| had a program that malloc'ed a big block, then free'd it, then
malloc'ed a little block, then started over, would | see the same
behavior as | see from IDL?

If there is no difference, then it really is an OS problem/feature, and

RSI would have to add their own memory management. If not, then maybe
RSI could do something about it. | guess part of the problem is that it

is not usual to use malloc for every little variable in a C program (you

use the stack instead for most scalar variables), whereas IDL used heap
memory for everything (?).

Peter

Page 3 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=2834&goto=4200#msg_4200
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=4200
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

