Subject: CORRELATE where is the problem? Posted by xiao zhang on Sun, 08 Mar 2009 17:40:47 GMT View Forum Message <> Reply to Message

Hi~ everyone. I have a simple question here. I have two arrays and I calculated the correlation between them. The result is 0.49. But when I use the equation to calculate the correlation. The result is 0.99. And I can see from the plot that they are actually highly correlated. Why is that? THX

```
openr,1,'data.txt'
data=fltarr(2,1227)
readf,1,data

temp=data(1,*)
oo=data(0,*)
;print,temp(0)

temp=reform(temp)
oo=reform(oo)

corr=CORRELATE(oo,temp)
print,corr
rr=LINFIT(temp,oo)
print,rr
plot,psym=2,temp,oo
```

Subject: Re: CORRELATE where is the problem?
Posted by David Fanning on Sun, 08 Mar 2009 20:52:14 GMT
View Forum Message <> Reply to Message

xiao writes:

```
    I used the equation in this link:
    http://www.jerrydallal.com/LHSP/corr.htm
    but the result is different from IDL :(
    I doubt it, but let's see how you implemented it.:-)
    Cheers,
    David
    David Fanning, Ph.D.
    Fanning Software Consulting, Inc.
```

Subject: Re: CORRELATE where is the problem?
Posted by Brian Larsen on Mon, 09 Mar 2009 12:24:16 GMT
View Forum Message <> Reply to Message

On Mar 8, 1:40 pm, xiao < littledd...@gmail.com > wrote:

- > Hi~ everyone. I have a simple question here. I have two arrays and I
- > calculated the correlation between them. The result is 0.49. But when
- > I use the equation to calculate the correlation. The result is 0.99.
- > And I can see from the plot that they are actually highly correlated.
- > Why is that? THX
- >
- > openr,1,'data.txt'
- > data=fltarr(2,1227)
- > readf,1,data
- >
- > temp=data(1,*)
- > oo=data(0,*)
- > ;print,temp(0)
- >
- > temp=reform(temp)
- > oo=reform(oo)
- >
- > corr=CORRELATE(oo,temp)
- > print,corr
- > rr=LINFIT(temp,oo)
- > print,rr
- > plot,psym=2,temp,oo

Are you talking about the difference between corr and rr?

Correlate:

Return Value

If vectors of unequal lengths are specified, the longer vector is truncated to the length of the shorter vector and a single correlation coefficient is returned. If an m x n array is specified, the result will be an m x m array of linear Pearson correlation coefficients, with the element i,j corresponding to correlation of the ith and jth columns of the input array.

Linfit:

Return Value

The result is a two-element vector containing the linear model

parameters	ΙΑ.	B	١.
pararrotoro	, ,,	_	ш

Those two are less related than apples and oranges, more like apples and peanuts.

Brian

Brian Larsen **Boston University** Center for Space Physics http://people.bu.edu/balarsen/Home/IDL