Subject: Re: VISualize 2009 summary
Posted by jeffnettles4870 on Tue, 21 Apr 2009 00:48:34 GMT

View Forum Message <> Reply to Message

On Apr 20, 2:01 pm, mgalloy <mgal...@gmail.com> wrote:
I'm going to write a few posts about the contents of last week's
VISualize 2009 seminar in Washington, DC, starting off with ITT VIS’
presentation about the roadmap for IDL 7.1 and beyond:

http://michaelgalloy.com/2009/04/20/idI-roadmap.html

a great time, especially meeting face to face those of you | had only
communicated with online previously.

>
>
>
>
>
>
> Hopefully these will be useful for those unable to attend. | know | had
>
>
>
> Mike

> --www.michaelgalloy.com

> Associate Research Scientist

> Tech-X Corporation

Excellent! | wanted to attend,but had another meeting that week so i'm
looking forward to your posts. I'm also crossing my fingers that when

i read about the roadmap for improving IDL i see the word "postscript"
mentioned prominently!

Subject: Re: VISualize 2009 summary
Posted by Michael Galloy on Tue, 21 Apr 2009 05:33:57 GMT

View Forum Message <> Reply to Message

"Jeff N." <jeffnettles4870@gmail.com> wrote:

> Excellent! | wanted to attend,but had another meeting that week so i'm
looking forward to your posts. I'm also crossing my fingers that when

i read about the roadmap for improving IDL i see the word "postscript"
mentioned prominently!

vV V V

Then you should be happy since the #1 item (at least the way that |
ordered them) is 24-bit color for PostScript.

Mike

www michaelgalloy.com
Associate Research Scientist
Tech-X Corporation

Subject: Re: VISualize 2009 summary

Page 1 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5905
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=28762&goto=66213#msg_66213
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=66213
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5698
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=28762&goto=66212#msg_66212
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=66212
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Posted by Bob[4] on Tue, 21 Apr 2009 20:07:50 GMT

View Forum Message <> Reply to Message

On Apr 20, 12:01 pm, mgalloy <mgal...@gmail.com> wrote:
I'm going to write a few posts about the contents of last week's
VISualize 2009 seminar in Washington, DC, starting off with ITT VIS’
presentation about the roadmap for IDL 7.1 and beyond:

http://michaelgalloy.com/2009/04/20/idI-roadmap.html

>
>
>
>
>
>
> Hopefully these will be useful for those unable to attend. | know | had
> a great time, especially meeting face to face those of you | had only
> communicated with online previously.

>

>

>

>

>

Mike
--www.michaelgalloy.com
Associate Research Scientist
Tech-X Corporation

Out of the list of 13 items, | see 3 that interest me (to say that the
development of IDL is going in the wrong direction is an
understatement):

24-bit color PostScript in direct graphics

modern language features (associative arrays, lists, operator
overloading)

modern Ul toolkit

The hashes and lists are especially promising, but where is the
garbage collector? Certainly most people would take a garbage
collector before most items on the list. Since a garbage collector
seems unthinkable for ITT (and RSI before them), they should consider
a reference type. This would be like a pointer to heap variable

except that it would be guaranteed that only one variable would be
pointing to it (sort of like an allocatable in Fortran). Since only

one variable would be pointing to it, the heap variable could be
garbage collected whenever the reference variable went out of scope or
a new variable was assigned to it (this is exactly the same as a
"normal” IDL variable so all the code is there to do it). As a

further benefit the need to de-reference the variable to get at what

it was pointing to would not be necessary which would clean up code
using reference variables in structures or arrays. Here is an example
how it could be used:

; define a structure with two reference variables (one defined and one
not)
struct = {a:ref_new(fltarr(10)), b:ref_new()}

; assign the 2nd one (note that ref_new is need to assign a new

Page 2 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6804
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=28762&goto=66204#msg_66204
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=66204
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

reference)
struct.b = ref_new(fltarr(20))

; re-assign tag a of the structure
; (the heap variable containing fltarr(10) is garbage collected)
struct.a = ref_new(fltarr(15))

: note that no "*" is need to de-reference struct.a
print, struct.a[2:5]

; if struct.a was a pointer than this would be print, (*struct.a)
[2:5], yuk

For me at least, 95% of my usage of pointers in IDL is for use in
structures or ptrarr's and reference variables could eliminate this
need. These could be easily garbage collected and provide the added
benefit of eliminating the (*ptr)[] syntax which is hard to read and

error prone.

What do you think?

Subject: Re: VISualize 2009 summary
Posted by T.H. on Wed, 22 Apr 2009 10:17:34 GMT

View Forum Message <> Reply to Message

On Apr 21, 4:.07 pm, Bob <bobnnamt...@gmail.com> wrote:

> On Apr 20, 12:01 pm, mgalloy <mgal...@gmail.com> wrote:

>

>> |'m going to write a few posts about the contents of last week's

>> VISualize 2009 seminar in Washington, DC, starting off with ITT VIS'
>> presentation about the roadmap for IDL 7.1 and beyond:

>

>> http://michaelgalloy.com/2009/04/20/idl-roadmap.html

>

>> Hopefully these will be useful for those unable to attend. I know | had
>> a great time, especially meeting face to face those of you | had only
>> communicated with online previously.

>> Mike

>> --www.michaelgalloy.com
>> Associate Research Scientist
>> Tech-X Corporation

>
> Qut of the list of 13 items, | see 3 that interest me (to say that the
> development of IDL is going in the wrong direction is an

> understatement):

>

Page 3 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6674
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=28762&goto=66197#msg_66197
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=66197
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVYVYVYVYVYVYV

24-bit color PostScript in direct graphics

modern language features (associative arrays, lists, operator
overloading)

modern Ul toolkit

The hashes and lists are especially promising, but where is the
garbage collector? Certainly most people would take a garbage
collector before most items on the list. Since a garbage collector
seems unthinkable for ITT (and RSI before them), they should consider
a reference type. This would be like a pointer to heap variable

except that it would be guaranteed that only one variable would be
pointing to it (sort of like an allocatable in Fortran). Since only

one variable would be pointing to it, the heap variable could be
garbage collected whenever the reference variable went out of scope or
a new variable was assigned to it (this is exactly the same as a
"normal” IDL variable so all the code is there to do it). As a

further benefit the need to de-reference the variable to get at what

it was pointing to would not be necessary which would clean up code
using reference variables in structures or arrays. Here is an example
how it could be used:

; define a structure with two reference variables (one defined and one
not)
struct = {a:ref_new(fltarr(10)), b:ref_new()}

; assign the 2nd one (note that ref_new is need to assign a new
reference)
struct.b = ref_new(fltarr(20))

; re-assign tag a of the structure
; (the heap variable containing fltarr(10) is garbage collected)
struct.a = ref_new(fltarr(15))

: note that no "*" is need to de-reference struct.a
print, struct.a[2:5]

; if struct.a was a pointer than this would be print, (*struct.a)
[2:5], yuk

For me at least, 95% of my usage of pointers in IDL is for use in
structures or ptrarr's and reference variables could eliminate this
need. These could be easily garbage collected and provide the added
benefit of eliminating the (*ptr)[] syntax which is hard to read and

error prone.

What do you think?

| think that IDL has a lot of needs but a garbage collector is pretty

Page 4 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

low on the list since with proper programming all of your pointers
will be tracked and handled anyway. I've very excited to see plans
that they have for modernizing the language and interactive graphics.

Mike, Thanks for the post!

Page 5 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

