Subject: Re: yet another idl memory question
Posted by Jean H. on Thu, 04 Jun 2009 16:29:58 GMT

View Forum Message <> Reply to Message

Hi,

Unless you are using pointers, you can not be sure that the same memory
space will be used in the different function calls.... and you don't
really have to care either, especially under Linux.

If you do the same processing on data of the same size, it is likely
because your code is using memory and not releasing it. Two things come
to mind: 1) you are creating a pointer but never destroy it and 2) you

are saving your results... in which case you may want to save the
variable(s) to a file, free the memory (data=0B) and start processing

the next file.

Jean

jw2519@columbia.edu wrote:
How do | force that IDL set aside a chunk of contiguous memory to be
refilled by a variable of equal size at each iteration of a procedure?

More specifically, | have a code which consists of three procedures.
One of these serves as the wrapper, one uses the IDL OpenDAP utility
to download the relevant data, and the third processes the data into
the grid and format that | want. The code will iterate for as long as

the wrapper indicates that processed data files need to be created. |
am running this on a 64-bit linux machine (IDL 7.0).

Each iteration of the code performs four OpenDAP calls; each call
downloads a large (~750MB) structure. After several iterations, the
code exits with an insufficient memory to allocate array error (or
sometimes "error reading value array: read is for xxx bytes, but there
are only yyy in the buffer"; always this error occurs within an
OpenDAP call). Using help,/memory and several of the tricks and tools
posted elsewhere, | have been able to substantially reduce the max
memory usage, but this only nets me another one and a half iterations
or so. So my guess is that the problem is that there is no longer a
sufficiently large block of contiguous memory into which to download
the structure. Each of the four structures is of equal size at each
iteration. How can | set aside a block of contiguous memory so that
IDL will reuse the same chunk for each structure every time i call the
procedure? I've tried using a solitary common block (i.e. just within
the procedure in question), and I've attempted to use pointers. The
program runs in both cases, but still exits with the same error. Of
course, | am not at all certain that | used either of these

correctly...

VVVVVVVVVVVVVVVVVVVVVYVVYVYVYVYVYV

Page 1 of 5 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5815
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=28983&goto=66691#msg_66691
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=66691
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> Any suggestions are greatly appreciated.

Subject: Re: yet another idl memory question
Posted by David Fanning on Thu, 04 Jun 2009 17:06:09 GMT

View Forum Message <> Reply to Message

Jean H. writes:

> in which case you may want to save the
> variable(s) to a file, free the memory (data=0B) and start processing
> the next file.

Of course, data=0B doesn't free *all* the memory,

and doing this many times leads, | suspect, to the memory
fragmentation that is the heart of the problem. | suggest

you use UNDEFINE. That really does release *all* the memory
associated with a variable. And it elegantly indicates

what the code is actually doing, too, a significant

advantage for people reading your code after you have

run off to the tropics with that hot financial analyst

over in the head shed. :-)

http://www.dfanning.com/programs/undefine.pro
Cheers,
David
David Fanning, Ph.D.

Coyote's Guide to IDL Programming (www.dfanning.com)
Sepore ma de ni thui. ("Perhaps thou speakest truth.")

Subject: Re: yet another idl memory question
Posted by Karl[1] on Thu, 04 Jun 2009 20:06:28 GMT

View Forum Message <> Reply to Message

On Jun 4, 11:06 am, David Fanning <n...@dfanning.com> wrote:

> Jean H. writes:

>> in which case you may want to save the

>> variable(s) to a file, free the memory (data=0B) and start processing
>> the next file.

>

> Of course, data=0B doesn't free *all* the memory,

Page 2 of 5 ---- Cenerated from conp. |l ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=28983&goto=66689#msg_66689
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=66689
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5533
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=28983&goto=66687#msg_66687
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=66687
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

and doing this many times leads, | suspect, to the memory
fragmentation that is the heart of the problem. | suggest

you use UNDEFINE. That really does release *all* the memory
associated with a variable. And it elegantly indicates

what the code is actually doing, too, a significant

advantage for people reading your code after you have

run off to the tropics with that hot financial analyst

over in the head shed. :-)

http://www.dfanning.com/programs/undefine.pro
Cheers,
David
David Fanning, Ph.D.

Coyote's Guide to IDL Programming (www.dfanning.com)
Sepore ma de ni thui. ("Perhaps thou speakest truth.")

VVVVVVVVVVVVVVVYVYVYVYV

I'm not sure that's the explanation. IDL variables consist of a small
(about 40 bytes) structure. If the variable has a dynamic part, as in
arrays, the dynamic part is allocated separately and the pointer
placed in the IDL variable structure. data=0B just frees the dynamic
part. Further, | think that the variable structures are allocated in
groups (pools) so that IDL does not have to constantly alloc and free
these small structures as variables activate and deactivate. So, an
undefine will probably just put the variable back into a pool, with no
storage impacts at all.

Fragmentation could be the issue, if the right pattern of dynamic
allocations and frees exist. But given that this is on 64-bit Linux,

| rather doubt it, as the virtual address space is huge and would be
difficult to fragment with 750MB blocks in "a few iterations".

To the OP:

Who is actually allocating the memory? OpenDAP? Or your IDL
application?

As mentioned before, be sure you are freeing the memory before the
next iteration. Regardless of who allocates it, leaving it unfreed
will probably bump you up against your process size limit in Linux.

Does OpenDAP allow you to pass in a variable that you have defined/
allocated yourself? You seem to imply that that this is possible

since you mention creating your own pointer vars, etc. Are you sure
that OpenDAP is actually using the block you pass in and not

Page 3 of 5 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

allocating a new one anyway?

| think you are on the right track for the ideal solution. You want
to determine the required size and allocate the block once. Then
convince OpenDAP to use it to store the data, and then just keep
reusing it. You are fortunate here in that the data size does not
change. If it were variable, you'd either have to alloc a worst-case
block and live with that or possibly suffer fragmentation issues by
allocing/freeing each time.

| think that the key to the answer is determining how OpenDAP allocs
this memory and how to convince it to reuse the same block. And you'd
need to know more about OpenDAP to determine all of that. Sorry, |
don't know much about it.

Karl

Subject: Re: yet another idl memory question
Posted by pgrigis on Mon, 08 Jun 2009 18:22:10 GMT

View Forum Message <> Reply to Message

On Jun 4, 1:06 pm, David Fanning <n...@dfanning.com> wrote:

> Jean H. writes:

>> in which case you may want to save the

>> variable(s) to a file, free the memory (data=0B) and start processing
>> the next file.

>
> Of course, data=0B doesn't free *all* the memory,

> and doing this many times leads, | suspect, to the memory

> fragmentation that is the heart of the problem. | suggest

> you use UNDEFINE. That really does release *all* the memory
> associated with a variable.

Really? Certainly it's not a substitute for ptr_free, is it?
At least not in my system:

help,/mem
;heap memory used: 924074, max: 1972734, gets: 574,
frees: 135

;Create pointer

a=ptr_new(bytarr(2LL"28))

help,/mem

:;heap memory used: 269360586, max: 269360761, gets: 582,
frees: 140

.comp ~/undefine.pro ;makes sure | am using DF's undefine

Page 4 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6214
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=28983&goto=66789#msg_66789
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=66789
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

:% Compiled module: UNDEFINE.
undefine,a

help,a
‘A UNDEFINED = <Undefined>

help,/mem
;heap memory used: 269362262, max: 270427272, gets: 613,
frees: 164

heap_gc

help,/mem

;heap memory used: 926762, max: 269362382, gets: 624,
frees: 174

Ciao,

Paolo

> And it elegantly indicates

> what the code is actually doing, too, a significant

> advantage for people reading your code after you have
> run off to the tropics with that hot financial analyst

> over in the head shed. :-)

>

> http://www.dfanning.com/programs/undefine.pro

>

> Cheers,

>

> David

>

> -

> David Fanning, Ph.D.

> Coyote's Guide to IDL Programming (www.dfanning.com)
> Sepore ma de ni thui. ("Perhaps thou speakest truth.")

Page 5 of 5 ---- Cenerated from conp. |l ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

