Subject: about color table

Posted by Hu on Thu, 18 Jun 2009 21:40:51 GMT

View Forum Message <> Reply to Message

Hi, folks

I want to do something like this: I got an 2-D array with values range from 0.0 to 1.0. and I want to display the array using different colors. for example, if the value is greater than 0.8, the elements will be displayed as red, if the values is between 0.5 and 0.8, the color will be blue, and the relationship can be listed as follows:

> 0.8 red 0.5-0.8 blue 0.3-0.5 yellow 0.2-0.3 green <0.2 white

I know I need to set up a color table, and the book 'IDL Programming techniques' demostrate how to set up a color table, and I set up the table including those above colors.

The question is, How can I set up the relationship between the color table and the different ranges? I mean how to 'tell' the computer display the array using this relationship?

Thanks

Subject: Re: about color table
Posted by David Fanning on Sat, 20 Jun 2009 03:58:55 GMT
View Forum Message <> Reply to Message

Jeremy Bailin writes:

- > Yeah, value_locate is very handy for problems like this! I
- > particularly like using it as a precursor to histogram i.e. if you
- > want to do something fancy using reverse_indices but don't have
- > uniformly-spaced bins, first use value_locate to get integer indices
- > and then use histogram to do the heavy lifting.

All right, I'll bite. Let's see an example of this. Maybe you can write an article and become the JD Smith of Value Locate. :-)

Cheers.

David

--

David Fanning, Ph.D.

Fanning Software Consulting, Inc.

Coyote's Guide to IDL Programming: http://www.dfanning.com/

Sepore ma de ni thui. ("Perhaps thou speakest truth.")

Subject: Re: about color table

Posted by Michael Galloy on Sun, 21 Jun 2009 19:46:07 GMT

View Forum Message <> Reply to Message

David Fanning wrote:

> Jeremy Bailin writes:

>

- >> Yeah, value_locate is very handy for problems like this! I
- >> particularly like using it as a precursor to histogram i.e. if you
- >> want to do something fancy using reverse_indices but don't have
- >> uniformly-spaced bins, first use value_locate to get integer indices
- >> and then use histogram to do the heavy lifting.

>

- > All right, I'll bite. Let's see an example of this.
- > Maybe you can write an article and become the JD Smith
- > of Value_Locate. :-)

No article, but I think this is what Jeremy is talking about:

IDL>; get some random data

IDL > d = randomu(12345678L, 20)

IDL> print, d

 $0.765989 \quad 0.0234537 \quad 0.589727 \quad 0.535102 \quad 0.982231$

0.693016 0.328147

0.295642 0.849918 0.592262 0.558133 0.534926

0.541119 0.594831

0.410172 0.928598 0.161021 0.928724 0.952072

0.522173

IDL>; specify cutoffs

IDL > cutoffs = [0.3, 0.4, 0.8]

IDL>; compute index of "bin" to put each value into

IDL> bins = value_locate(cutoffs, d) + 1L

IDL> print, ind

12 = p 111K, 111G					
	2	0	2	2	3
2	1	0			
	3	2	2	2	2
2	2	3			

0 3 3 2

IDL> ; compute histogram of bins

IDL> h = histogram(bins, reverse_indices=r)

IDL> print, h

3 1 11 5

IDL>; values less than 0.3 IDL> print, d[r[r[0]:r[1] - 1]] 0.0234537 0.295642 0.161021

IDL>; values between 0.3 and 0.4 IDL> print, d[r[r[1]:r[2] - 1]] 0.328147

IDL>; values between 0.4 and 0.8 IDL> print, d[r[r[2]:r[3] - 1]]

0.558133 0.534926

0.541119 0.594831 0.410172 0.522173

IDL>; values greater than 0.8 IDL> print, d[r[r[3]:r[4] - 1]]

Mike

--

www.michaelgalloy.com Associate Research Scientist Tech-X Corporation