
Subject: Re: Faster approach for total(data,dimension) possible?
Posted by wlandsman on Wed, 24 Jun 2009 11:19:08 GMT
View Forum Message <> Reply to Message

On Jun 24, 3:54 am, chris <rog...@googlemail.com> wrote:
> Hi,
> i'm looking for a faster approach to do the following:
>
> data=rebin(dist(100),100,100,50,/sample)
> mask=total(data,3) gt 0.
>
> Depending on the size of data and on the hardware of the client the
> code above runs too slow for me. I'd like to find all pixels in a
> hyperspectral application, which bands are not zero. The result should
> be a mask with the same 2D-dimensions as original data for further
> processing.

My first thought was to use ARRAY_EQUAL rather than TOTAL since
ARRAY_EQUAL(im,0) will stop computations as soon as a non-zero element
is found. But as far as I know, ARRAY_EQUAL can only return a
scalar argument, which means that one would have to loop over each
element of the output mask. Ugh.

But if we are forced to use TOTAL, there is no need for a double
precision computation. I found a significant speedup by replacing
the second line with

mask = total(data,3,/integer) GT 0

I also found a smaller speedup with the following code, which is based
on the theory that mathematical operations are always quickest on byte
data.

mask = total(data GT 0,/preserve_type,3) GT 0

-Wayne

Subject: Re: Faster approach for total(data,dimension) possible?
Posted by wlandsman on Wed, 24 Jun 2009 11:33:51 GMT
View Forum Message <> Reply to Message

> I also found a smaller speedup with the following code, which is based
> on the theory that mathematical operations are always quickest on byte
> data.
>
> mask = total(data GT 0,/preserve_type,3) GT 0
>

Page 1 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3563
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29104&goto=67071#msg_67071
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67071
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3563
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29104&goto=67070#msg_67070
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67070
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

I should add that you shouldn't use the BYTE method if you have more
than 255 images in your cube. In any case, I found it wasn't as
fast as using TOTAL(/INTEGER). --Wayne

Subject: Re: Faster approach for total(data,dimension) possible?
Posted by rogass on Wed, 24 Jun 2009 11:44:20 GMT
View Forum Message <> Reply to Message

Dear Wayne,
thank you for your quick response and your suggestions. Unfortunately,
none of your approaches is faster, only a bit slower. I tried some
other methods based on histogram or value_locate or osrt, but each
appraoch was much slower then total(dat,3). Any other ideas?

Best regards

CR

Subject: Re: Faster approach for total(data,dimension) possible?
Posted by wlandsman on Wed, 24 Jun 2009 11:55:51 GMT
View Forum Message <> Reply to Message

On Jun 24, 7:44 am, chris <rog...@googlemail.com> wrote:
> Dear Wayne,
> thank you for your quick response and your suggestions. Unfortunately,
> none of your approaches is faster, only a bit slower. I tried some
> other methods based on histogram or value_locate or osrt, but each
> appraoch was much slower then total(dat,3). Any other ideas?
>

It might help to know what you are really doing. The example you
gave runs in milliseconds. Are you using much larger arrays, or
repeating the operation thousands of times? --Wayne

Subject: Re: Faster approach for total(data,dimension) possible?
Posted by rogass on Wed, 24 Jun 2009 12:12:04 GMT
View Forum Message <> Reply to Message

Dear Wayne,
thank you! My code runs for a [1536,231,126] sample also very fast -
in 0.13 sec, but it's not for me. At a colleague's PC it lasts minutes
without caching the matrix to swap and he asked me for a possible
speedup. Unfortunately, I don't know which could be faster than
total... I cannot understand, why the fastest method to determine

Page 2 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6429
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29104&goto=67069#msg_67069
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67069
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3563
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29104&goto=67068#msg_67068
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67068
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6429
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29104&goto=67067#msg_67067
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67067
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

whether a vector is entirely set to zero is based on total - a sum
method... I tried to increase speed by the use of the gpulib, but
also got the same effect. Any other ideas?

Best regards

CR

Subject: Re: Faster approach for total(data,dimension) possible?
Posted by Chris[6] on Wed, 24 Jun 2009 13:35:55 GMT
View Forum Message <> Reply to Message

On Jun 24, 2:12 am, chris <rog...@googlemail.com> wrote:
> Dear Wayne,
> thank you! My code runs for a [1536,231,126] sample also very fast -
> in 0.13 sec, but it's not for me. At a colleague's PC it lasts minutes
> without caching the matrix to swap and he asked me for a possible
> speedup. Unfortunately, I don't know which could be faster than
> total... I cannot understand, why the fastest method to determine
> whether a vector is entirely set to zero is based on total - a sum
> method... I tried to increase speed by the use of the gpulib, but
> also got the same effect. Any other ideas?
>
> Best regards
>
> CR

did you try something like max(data, dimen = 3)?

chris

Subject: Re: Faster approach for total(data,dimension) possible?
Posted by wlandsman on Wed, 24 Jun 2009 14:19:03 GMT
View Forum Message <> Reply to Message

On Jun 24, 9:35 am, Chris <beaum...@ifa.hawaii.edu> wrote:
>
> did you try something like max(data, dimen = 3)?
>
> chris

This seems like the fastest method so long as the data is always
positive (as in the original example) or at least so long as one can
rule out the case where all pixels are either negative or zero. --
Wayne

Page 3 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6539
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29104&goto=67065#msg_67065
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67065
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3563
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29104&goto=67063#msg_67063
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67063
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: Faster approach for total(data,dimension) possible?
Posted by Jean H. on Wed, 24 Jun 2009 14:33:41 GMT
View Forum Message <> Reply to Message

wlandsman wrote:
> On Jun 24, 9:35 am, Chris <beaum...@ifa.hawaii.edu> wrote:
>> did you try something like max(data, dimen = 3)?
>>
>> chris
>
> This seems like the fastest method so long as the data is always
> positive (as in the original example) or at least so long as one can
> rule out the case where all pixels are either negative or zero. --
> Wayne

look at the min also...

Subject: Re: Faster approach for total(data,dimension) possible?
Posted by rogass on Wed, 24 Jun 2009 15:38:00 GMT
View Forum Message <> Reply to Message

Min and Max approach is two times slower in my case, so this doesn't
seem to be a solution. Any other ideas?

Thanks and best regards

CR

Subject: Re: Faster approach for total(data,dimension) possible?
Posted by wlandsman on Wed, 24 Jun 2009 16:34:34 GMT
View Forum Message <> Reply to Message

On Jun 24, 11:38 am, chris <rog...@googlemail.com> wrote:
> Min and Max approach is two times slower in my case, so this doesn't
> seem to be a solution. Any other ideas?
>

 Be sure to calculate min and max at the same time, e.g.
mask1 = max(data,dimen=3,min=mask)
mask = (mask or mask1) NE 0

 But it seems that the best performance is hardware dependent.
Below are the repeatable times in seconds I get for the different
methods for a 1536 x 231 x 126 array on different systems.

{ x86_64 linux unix linux 7.0

Page 4 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5815
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29104&goto=67061#msg_67061
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67061
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6429
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29104&goto=67058#msg_67058
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67058
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3563
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29104&goto=67053#msg_67053
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67053
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

TOTAL 0.26
TOTAL(/INTEGER) 0.28
TOTAL(byte) 0.17
MINMAX 0.25

(x_86_64 darwin unix Mac OS X 7.06)
TOTAL 0.24
TOTAL(/INTEGER) 0.16
TOTAL(byte) 0.22
MINMAX 0.24

Since you are getting the best times for the first (TOTAL()) method, I
suspect your hardware is optimized for floating point calculations.
If you were to code it in C (i.e. not worry about loops) the quickest
method should be some variant of ARRAY_EQUAL
where you stop the comparisons once you find a non-zero element in a
band. But until ARRAY_EQUAL gets a dimension keyword like MIN and
MAX I don't think any other IDL method is going to be much faster.
--Wayne

Subject: Re: Faster approach for total(data,dimension) possible?
Posted by rogass on Wed, 24 Jun 2009 20:51:28 GMT
View Forum Message <> Reply to Message

Dear Wayne,
thank you again for your response. I got for Windows Vista x64 with
2x2.5 GHz Intel DualCore and 8 GB Ram within:
IDL 6.4 x64
- maxmin: 0.25 s
- total(/integer): 0.19 s
- total : 0.13 s

So, maybe it doesnt matter, but the total method seeme to beat each
other approach...:(

Any further ideas?

Best regards

CR

Subject: Re: Faster approach for total(data,dimension) possible?
Posted by Jeremy Bailin on Wed, 24 Jun 2009 20:53:15 GMT
View Forum Message <> Reply to Message

Page 5 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6429
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29104&goto=67046#msg_67046
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67046
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29104&goto=67044#msg_67044
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67044
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

On Jun 24, 12:34 pm, wlandsman <wlands...@gmail.com> wrote:
> On Jun 24, 11:38 am, chris <rog...@googlemail.com> wrote:
>
>> Min and Max approach is two times slower in my case, so this doesn't
>> seem to be a solution. Any other ideas?
>
> Be sure to calculate min and max at the same time, e.g.
> mask1 = max(data,dimen=3,min=mask)
> mask = (mask or mask1) NE 0
>
> But it seems that the best performance is hardware dependent.
> Below are the repeatable times in seconds I get for the different
> methods for a 1536 x 231 x 126 array on different systems.
>
> { x86_64 linux unix linux 7.0
> TOTAL 0.26
> TOTAL(/INTEGER) 0.28
> TOTAL(byte) 0.17
> MINMAX 0.25
>
> (x_86_64 darwin unix Mac OS X 7.06)
> TOTAL 0.24
> TOTAL(/INTEGER) 0.16
> TOTAL(byte) 0.22
> MINMAX 0.24
>
> Since you are getting the best times for the first (TOTAL()) method, I
> suspect your hardware is optimized for floating point calculations.
> If you were to code it in C (i.e. not worry about loops) the quickest
> method should be some variant of ARRAY_EQUAL
> where you stop the comparisons once you find a non-zero element in a
> band. But until ARRAY_EQUAL gets a dimension keyword like MIN and
> MAX I don't think any other IDL method is going to be much faster.
> --Wayne

How about using product? It should be well-optimized for the cases of
multiplying-by-one and multiplying-by-zero:

mask = ~product(data gt 0, 3, /preserve_type)

-Jeremy.

Subject: Re: Faster approach for total(data,dimension) possible?
Posted by Jeremy Bailin on Wed, 24 Jun 2009 21:04:37 GMT
View Forum Message <> Reply to Message

On Jun 24, 4:53 pm, Jeremy Bailin <astroco...@gmail.com> wrote:

Page 6 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29104&goto=67043#msg_67043
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67043
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> On Jun 24, 12:34 pm, wlandsman <wlands...@gmail.com> wrote:
>
>
>
>> On Jun 24, 11:38 am, chris <rog...@googlemail.com> wrote:
>
>>> Min and Max approach is two times slower in my case, so this doesn't
>>> seem to be a solution. Any other ideas?
>
>> Be sure to calculate min and max at the same time, e.g.
>> mask1 = max(data,dimen=3,min=mask)
>> mask = (mask or mask1) NE 0
>
>> But it seems that the best performance is hardware dependent.
>> Below are the repeatable times in seconds I get for the different
>> methods for a 1536 x 231 x 126 array on different systems.
>
>> { x86_64 linux unix linux 7.0
>> TOTAL 0.26
>> TOTAL(/INTEGER) 0.28
>> TOTAL(byte) 0.17
>> MINMAX 0.25
>
>> (x_86_64 darwin unix Mac OS X 7.06)
>> TOTAL 0.24
>> TOTAL(/INTEGER) 0.16
>> TOTAL(byte) 0.22
>> MINMAX 0.24
>
>> Since you are getting the best times for the first (TOTAL()) method, I
>> suspect your hardware is optimized for floating point calculations.
>> If you were to code it in C (i.e. not worry about loops) the quickest
>> method should be some variant of ARRAY_EQUAL
>> where you stop the comparisons once you find a non-zero element in a
>> band. But until ARRAY_EQUAL gets a dimension keyword like MIN and
>> MAX I don't think any other IDL method is going to be much faster.
>> --Wayne
>
> How about using product? It should be well-optimized for the cases of
> multiplying-by-one and multiplying-by-zero:
>
> mask = ~product(data gt 0, 3, /preserve_type)
>
> -Jeremy.

Oops, that should of course read:

mask = ~product(data eq 0, 3, /preserve_type)

Page 7 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

-Jeremy.

Subject: Re: Faster approach for total(data,dimension) possible?
Posted by rogass on Wed, 24 Jun 2009 22:30:38 GMT
View Forum Message <> Reply to Message

Dear Jeremy,
I tested it, but your approach is in my specific case also slower.
Maybe, there is no solution... :(

Best regards

CR

Subject: Re: Faster approach for total(data,dimension) possible?
Posted by Chris[6] on Thu, 25 Jun 2009 00:46:15 GMT
View Forum Message <> Reply to Message

On Jun 24, 12:30 pm, chris <rog...@googlemail.com> wrote:
> Dear Jeremy,
> I tested it, but your approach is in my specific case also slower.
> Maybe, there is no solution... :(
>
> Best regards
>
> CR

maybe a faster computer?!

chris

Subject: Re: Faster approach for total(data,dimension) possible?
Posted by rogass on Thu, 25 Jun 2009 06:58:54 GMT
View Forum Message <> Reply to Message

> maybe a faster computer?!
>
> chris

Dear Chris
it's me, Chris :) Back to topic: That may be, but nevertheless there
are routines missing, which can compare a 3D matrix with a 1D vector
simply and fast. Any other ideas?

Page 8 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6429
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29104&goto=67041#msg_67041
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67041
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6539
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29104&goto=67039#msg_67039
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67039
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6429
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29104&goto=67038#msg_67038
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67038
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Best regards

CR

Subject: Re: Faster approach for total(data,dimension) possible?
Posted by wlandsman on Thu, 25 Jun 2009 12:10:51 GMT
View Forum Message <> Reply to Message

>
>> chris
>
> Dear Chris
> it's me, Chris :) Back to topic: That may be, but nevertheless there
> are routines missing, which can compare a 3D matrix with a 1D vector
> simply and fast. Any other ideas?
>

Check your assumptions. The ideas suggested are all completely
vectorized IDL code and have the same speed to an order of
magnitude. They have some unnecessary computations because every
pixel in each band is checked even if one already knows the column
contains non-zero elements. This should slow the routines down by
about a factor of two from an ideal method.

But if the existing code takes less than a second on all the machines
tested, and takes several minutes on your user's machine, then I would
take a very close look as to whether it is really this section of code
that is causing the problem. --Wayne

Subject: Re: Faster approach for total(data,dimension) possible?
Posted by JDS on Thu, 25 Jun 2009 15:22:11 GMT
View Forum Message <> Reply to Message

I agree with all the assessments thus far. These methods are within a
factor of 2 or 3 of the best IDL-native vectorized result (and very
likely a factor of 10-30 off the compiled C result). As for this
calculation taking "minutes", this sounds suspiciously like running
out of memory and hitting the disk. That would be unusual given the
~180MB data size here, but perhaps other processes or parts of the
routine are taxing memory, or it's a very old machine with <<1GB of
RAM. I'd look to this issue first. Here, no matter the algorithm, it
runs in a fraction of a second.

That concern aside, there is another approach -- one you will rarely

Page 9 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3563
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29104&goto=67036#msg_67036
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67036
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6762
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29104&goto=67032#msg_67032
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67032
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

find me recommending. If you happen to know that null bands are going
to be found very rarely, a thinned WHERE loop can actually outperform
the native vector operation:

 s=size(data,/DIMENSIONS)
 chnk=s[0]*s[1]
 zeroes=lindgen(chnk)
 for i=0L,s[2]-1 do begin
 z=where(data[zeroes+i*chnk] eq 0.,cnt)
 if cnt eq 0 then break
 zeroes=zeroes[z]
 endfor

Here I'm operating on an array of the size mentioned above:

 data=randomu(sd,1536,231,126)
 data[where(data lt .9)]=0.

By tuning the ".9" factor, you can arrange for as many null bands as
you want.

When only a few bands are null in a given data cube, this is roughly
2.5x faster for me. When it's very rare to have *any* null bands,
this method can be *much* faster: 20-30x. The reason is clear: it
takes only a few iterations to prove the absence of nulls in that
case, and index thinning proceeds rapidly

But here's the catch (isn't there always a catch?). If null bands are
present at a frequency of even 1 in 200 or more, this loop method
becomes slower than TOTAL. In the worst case (all bands null), it's
about 6x slower (all on my dual-core machine, YMMV). So, as is usual
with these things, the answer to "which method is faster for my data"
is: "it depends on your data."

You might also notice this is a reasonable study case for the recently
debated issue of "when are for loops *not* evil". Since in each
iteration, a large number of elements are being compared, the looping
overhead is not severe. You'll also notice this illustrates the
method of "compute your own index vector and re-use." Had we used
IDL's native array range operator [x:y] or [*,*,z], this most
certainly would have spoiled the time savings.

One other point worth mentioning: if your data cubes are "skinny and
tall", with the third dimension long compared to the others, this loop
method will perform even better. For instance, using a similarly
sized data cube, but much taller:

 data=randomu(sd,153,231,1260)

Page 10 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 data[where(data lt .998)]=0.

I find speed parity between TOTAL and the thinned WHERE loop occurs
when 8% of the bands are null.

JD

Subject: Re: Faster approach for total(data,dimension) possible?
Posted by rogass on Fri, 26 Jun 2009 14:44:55 GMT
View Forum Message <> Reply to Message

Dear all,
thank you for your suggestions. I will pick up JD's approach - like
several times :). For a very large data set (eg. 5000x5000x2000) I
will generally broke it up into chunks. Then within the chunks, I will
generate a mask for the first channel where the pixels have zero
values assuming they are zero-channel representatives. This mask will
be used with the total approach and the ~mask with JD's For-Loop-
approach. After this I will merge both results - result1+result2 eq 2.
This may be faster for a very large data set. Additionally, the
presence of a working gpulib will be tested and used to increase the
computation speed.

All the best

CR

Page 11 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6429
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29104&goto=66999#msg_66999
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=66999
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

