
Subject: Re: Avoiding a FOR loop in calculation of SPH potential energy
Posted by cody on Tue, 23 Jun 2009 07:29:35 GMT
View Forum Message <> Reply to Message

i've been reading through this discussion group and one thing i see
often is that you can vectorize a FOR loop to avoid it. so my code
would be something like:

 u = 1 + bytarr(pn)
 dx = u#s.x
 dy = u#s.y
 dz = u#s.z
 for i = 0L, pn-1 do dx[0, i] = dx[*, i] - s.x
 for i = 0L, pn-1 do dy[0, i] = dy[*, i] - s.y
 for i = 0L, pn-1 do dz[0, i] = dz[*, i] - s.z
 d = sqrt(dx^2+dy^2+dz^2)
 print,'calculated all ds?'

but i'm not able to allocate that much memory for 100k particles and i
wouldn't know how to do the proper potential energy calculation that
way either since not all particles are the same mass.

Subject: Re: Avoiding a FOR loop in calculation of SPH potential energy
Posted by Chris[6] on Tue, 23 Jun 2009 14:21:18 GMT
View Forum Message <> Reply to Message

On Jun 22, 9:29 pm, cody <codyras...@gmail.com> wrote:
> i've been reading through this discussion group and one thing i see
> often is that you can vectorize a FOR loop to avoid it. so my code
> would be something like:
>
> u = 1 + bytarr(pn)
> dx = u#s.x
> dy = u#s.y
> dz = u#s.z
> for i = 0L, pn-1 do dx[0, i] = dx[*, i] - s.x
> for i = 0L, pn-1 do dy[0, i] = dy[*, i] - s.y
> for i = 0L, pn-1 do dz[0, i] = dz[*, i] - s.z
> d = sqrt(dx^2+dy^2+dz^2)
> print,'calculated all ds?'
>
> but i'm not able to allocate that much memory for 100k particles and i
> wouldn't know how to do the proper potential energy calculation that
> way either since not all particles are the same mass.

To distill the problem a little bit:
say that m, x, y, z represent the mass and positions for each

Page 1 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4506
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29125&goto=67092#msg_67092
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67092
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6539
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29125&goto=67086#msg_67086
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67086
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

particle. Something like the following might work if the vectors were
small

sz = (number of particles)
marr = rebin(m, sz, sz)
marr_1 = rebin(1#m, sz, sz)

dx = rebin(x, sz, sz) - rebin(1#x, sz, sz)
dy = rebin(y, sz, sz) - rebin(1#y, sz, sz)
dz = rebin(z, sz, sz) - rebin(1#z, sz, sz)
delt = sqrt(dx^2 + dy^2 + dz^2)

pe = marr * marr_1 / delt
;- diagonal elements are now infinity, and shouldn't be counted
anyways
ind = indgen(sz)
pe[ind,ind] = 0

;- total and correct for double counting
pe = total(pe) / 2.

In short, this calculates the distance between every particle pair,
and stores it in a 2D array. It then calculates the PE contribution
between each of these pairs, zeroes out the diagonal (because a
particle doesn't have any pe due to interaction with itself), totals
it, and divides by 2 (since each pair was counted twice)

Like you said, though, this wouldn't work with 100k elements (the
arrays would be 10^10 elements large). Some people might try breaking
up the array into small chunks (say of 100 elements each), calculate
the PE of these chunks, and then patch that all together at the end.
Its kind of a mess though (you still end up with nested loops, but
they have 10^3 instead of 10^5 iterations). For these types of
problems, IDL doesn't seem to have a great solution (save for the
ability to call external C programs to do the heavy lifting)

A more efficient algorithm, if you can get away with it, is to ignore
the contribution to the potential energy from pairs of particles very
far away from one another. In this case, you can use histograms to
efficiently index nearby objects. This turns a n^2 algorithm into an
essentially linear one. See http://www.dfanning.com/code_tips/slowloops.html

chris

Page 2 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: Avoiding a FOR loop in calculation of SPH potential energy
Posted by cody on Tue, 23 Jun 2009 19:39:34 GMT
View Forum Message <> Reply to Message

On Jun 23, 7:21 am, Chris <beaum...@ifa.hawaii.edu> wrote:
> On Jun 22, 9:29 pm, cody <codyras...@gmail.com> wrote:
>
>
>
>> i've been reading through this discussion group and one thing i see
>> often is that you can vectorize a FOR loop to avoid it. so my code
>> would be something like:
>
>> u = 1 + bytarr(pn)
>> dx = u#s.x
>> dy = u#s.y
>> dz = u#s.z
>> for i = 0L, pn-1 do dx[0, i] = dx[*, i] - s.x
>> for i = 0L, pn-1 do dy[0, i] = dy[*, i] - s.y
>> for i = 0L, pn-1 do dz[0, i] = dz[*, i] - s.z
>> d = sqrt(dx^2+dy^2+dz^2)
>> print,'calculated all ds?'
>
>> but i'm not able to allocate that much memory for 100k particles and i
>> wouldn't know how to do the proper potential energy calculation that
>> way either since not all particles are the same mass.
>
> To distill the problem a little bit:
> say that m, x, y, z represent the mass and positions for each
> particle. Something like the following might work if the vectors were
> small
>
> sz = (number of particles)
> marr = rebin(m, sz, sz)
> marr_1 = rebin(1#m, sz, sz)
>
> dx = rebin(x, sz, sz) - rebin(1#x, sz, sz)
> dy = rebin(y, sz, sz) - rebin(1#y, sz, sz)
> dz = rebin(z, sz, sz) - rebin(1#z, sz, sz)
> delt = sqrt(dx^2 + dy^2 + dz^2)
>
> pe = marr * marr_1 / delt
> ;- diagonal elements are now infinity, and shouldn't be counted
> anyways
> ind = indgen(sz)
> pe[ind,ind] = 0
>
> ;- total and correct for double counting
> pe = total(pe) / 2.

Page 3 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4506
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29125&goto=67082#msg_67082
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67082
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> In short, this calculates the distance between every particle pair,
> and stores it in a 2D array. It then calculates the PE contribution
> between each of these pairs, zeroes out the diagonal (because a
> particle doesn't have any pe due to interaction with itself), totals
> it, and divides by 2 (since each pair was counted twice)
>
> Like you said, though, this wouldn't work with 100k elements (the
> arrays would be 10^10 elements large). Some people might try breaking
> up the array into small chunks (say of 100 elements each), calculate
> the PE of these chunks, and then patch that all together at the end.
> Its kind of a mess though (you still end up with nested loops, but
> they have 10^3 instead of 10^5 iterations). For these types of
> problems, IDL doesn't seem to have a great solution (save for the
> ability to call external C programs to do the heavy lifting)
>
> A more efficient algorithm, if you can get away with it, is to ignore
> the contribution to the potential energy from pairs of particles very
> far away from one another. In this case, you can use histograms to
> efficiently index nearby objects. This turns a n^2 algorithm into an
> essentially linear one. Seehttp://www.dfanning.com/code_tips/slowloops.html
>
> chris

do you have a recommendation for where to go to learn how to use a C/C+
+ program inside an IDL program? that seems like it would solve my
problem.

Subject: Re: Avoiding a FOR loop in calculation of SPH potential energy
Posted by Michael Galloy on Tue, 23 Jun 2009 22:16:03 GMT
View Forum Message <> Reply to Message

On Jun 23, 1:39 pm, cody <codyras...@gmail.com> wrote:
> do you have a recommendation for where to go to learn how to use a C/C+
> + program inside an IDL program? that seems like it would solve my
> problem.

Get Ronn Kling's book *Calling C from IDL*:

 http://www.amazon.com/exec/obidos/redirect?link_code=as2&
;path=ASIN/0967127017&tag=harmonicfunct-20&camp=1789 &creative=9325

Mike
--
www.michaelgalloy.com
Associate Research Scientist
Tech-X Corporation

Page 4 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5698
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29125&goto=67081#msg_67081
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67081
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: Avoiding a FOR loop in calculation of SPH potential energy
Posted by Jeremy Bailin on Wed, 24 Jun 2009 04:20:15 GMT
View Forum Message <> Reply to Message

On Jun 23, 2:48 am, cody <codyras...@gmail.com> wrote:
> i have an SPH simulation with snapshots in time that are represented
> as structures in idl. the structures have mass, density, position etc.
> for every particle in the simulation. i'm trying to get a vector that
> represents the total potential energy at each snapshot. i have an
> outer FOR loop that loops through each snapshot file and this part is
> fine, i don't really want to change that. but i have an inner loop for
> calculating the PE that must calculate the total potential energy felt
> by each particle from every other particle without double counting. to
> do that, i just loop over a dummy variable j from 0 to the maximum
> particle ident -1 and make a sub list of particles where ident > j.
> this way, i'm not double counting and it's not n^2 time. but it's
> still way too slow for a 100k particle sim.
>
> now i'm fairly certain there's a way to speed this up considerably
> using IDL's strengths, but i'm a c++ programmer, so that's the way i
> think. can someone help me out?
>
> here's my code as it stands now:
>
> PRO exportenergy, enditer=enditer, deliter=deliter, root=root
>
> ;first get the total number of particles
> startiter = 1000
> n = (enditer - startiter)/deliter
> m=0
> G=3.93935d-7 ;SPH units
>
> arr = DBLARR(5, n)
> for i=0L,(n-1) do begin
> iter = i*deliter + startiter
> filename = root + '.' + STRING(iter,format='(I0)')
> readsdf,filename,s
> arr[0,i] = sdf_getdouble(filename,"tpos")
> arr[1,i] = 0.5*total(s.mass*s.vx^2)
> arr[2,i] = 0.5*total(s.mass*s.vy^2)
> arr[3,i] = 0.5*total(s.mass*s.vz^2)
>
> ;PE part starts here
> pn = max(s.ident)
> PE = 0.0
> for j=0L,pn-1 do begin
> sub = where(s.ident gt j)
> PE = PE + G*s[j].mass*total(s[sub].mass/sqrt((s[j].x-s[sub].x)^2+
> (s[j].y-s[sub].y)^2+(s[j].z-s[sub].z)^2))

Page 5 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29125&goto=67078#msg_67078
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67078
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> print,'just computed ' + string(j,format='(I0)') + ' PE=' +
> string(PE)
> endfor
> arr[4,i] = PE
> endfor

Do you need to use direct summation? Tree potential energies aren't
bad (though you need to use a smaller opening angle than for tree
forces to get the same accuracy), and will reduce it to O(N log N).

-Jeremy.

Page 6 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

