Subject: Re: Avoiding a FOR loop in calculation of SPH potential energy
Posted by cody on Tue, 23 Jun 2009 07:29:35 GMT

View Forum Message <> Reply to Message

i've been reading through this discussion group and one thing i see
often is that you can vectorize a FOR loop to avoid it. so my code
would be something like:

u =1+ bytarr(pn)

dx = u#s.x
dy = u#s.y
dz = u#fs.z

for i = OL, pn-1 do dx[O, i] = dx[*, i] - s.x
for i =0L, pn-1do dy[O0, i] = dy[*, i] - s.y
fori=0L, pn-1 do dz[0, i] = dz[*, i] - s.z
d = sqrt(dx"2+dy"2+dz"2)
print,'calculated all ds?'

but i'm not able to allocate that much memory for 100k particles and i
wouldn't know how to do the proper potential energy calculation that
way either since not all particles are the same mass.

Subject: Re: Avoiding a FOR loop in calculation of SPH potential energy
Posted by Chris[6] on Tue, 23 Jun 2009 14:21:18 GMT

View Forum Message <> Reply to Message

On Jun 22, 9:29 pm, cody <codyras...@gmail.com> wrote:

> i've been reading through this discussion group and one thing i see
> often is that you can vectorize a FOR loop to avoid it. so my code
> would be something like:

>

> u =1+ bytarr(pn)

> dXx = u#s.x

> dy =u#s.y

> dz=u#s.z

> fori=0L, pn-1do dx[0, i] = dx[*, i] - s.X
> fori=0L, pn-1do dy[0, i] =dy[* i] - s.y
> fori=0L, pn-1do dz[0, i] =dz[* i]-s.Z
> d = sqrti(dx"2+dy"2+dz"2)

> print,'calculated all ds?'

>

> but i'm not able to allocate that much memory for 100k particles and i
> wouldn't know how to do the proper potential energy calculation that
> way either since not all particles are the same mass.

To distill the problem a little bit:
say that m, x, y, z represent the mass and positions for each

Page 1 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4506
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29125&goto=67092#msg_67092
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67092
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6539
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29125&goto=67086#msg_67086
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67086
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

particle. Something like the following might work if the vectors were
small

sz = (number of particles)
marr = rebin(m, sz, sz)
marr_1 = rebin(1#m, sz, sz)

dx = rebin(x, sz, sz) - rebin(1#x, sz, sz)
dy = rebin(y, sz, sz) - rebin(1#y, sz, sz)
dz = rebin(z, sz, sz) - rebin(1#z, sz, sz)
delt = sqrt(dx"2 + dy"2 + dz"2)

pe = marr * marr_1/ delt
;- diagonal elements are now infinity, and shouldn't be counted

anyways
ind = indgen(sz)
pelind,ind] =0

;- total and correct for double counting
pe = total(pe) / 2.

In short, this calculates the distance between every particle pair,
and stores it in a 2D array. It then calculates the PE contribution
between each of these pairs, zeroes out the diagonal (because a
particle doesn't have any pe due to interaction with itself), totals
it, and divides by 2 (since each pair was counted twice)

Like you said, though, this wouldn't work with 100k elements (the

arrays would be 10”10 elements large). Some people might try breaking
up the array into small chunks (say of 100 elements each), calculate

the PE of these chunks, and then patch that all together at the end.

Its kind of a mess though (you still end up with nested loops, but

they have 1073 instead of 10”5 iterations). For these types of

problems, IDL doesn't seem to have a great solution (save for the

ability to call external C programs to do the heavy lifting)

A more efficient algorithm, if you can get away with it, is to ignore

the contribution to the potential energy from pairs of particles very

far away from one another. In this case, you can use histograms to

efficiently index nearby objects. This turns a n*2 algorithm into an

essentially linear one. See http://www.dfanning.com/code_tips/slowloops.html

chris

Page 2 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: Avoiding a FOR loop in calculation of SPH potential energy
Posted by cody on Tue, 23 Jun 2009 19:39:34 GMT

View Forum Message <> Reply to Message

On Jun 23, 7:21 am, Chris <beaum...@ifa.hawaii.edu> wrote:

> On Jun 22, 9:29 pm, cody <codyras...@gmail.com> wrote:

>

>

>

>> j've been reading through this discussion group and one thing i see
>> often is that you can vectorize a FOR loop to avoid it. so my code
>> would be something like:

>

>> u=1+ bytarr(pn)

>> dx = u#s.x

>> dy = u#s.y

>> dz=u#s.z

>> fori=0L, pn-1do dx[O, i] = dx[*, i] - s.X

>> fori=0L, pn-1do dy[O0, i] = dy[*, i] - S.y

>> fori=0L, pn-1dodz[0,i] =dz[*i]-s.z

>> d = sqrt(dx"2+dy"2+dz"2)

>> print,'calculated all ds?'

>

>> put i'm not able to allocate that much memory for 100k particles and i
>> wouldn't know how to do the proper potential energy calculation that
>> way either since not all particles are the same mass.

To distill the problem a little bit:

say that m, x, y, z represent the mass and positions for each
particle. Something like the following might work if the vectors were
small

sz = (number of particles)
marr = rebin(m, sz, sz)
marr_1 = rebin(1#m, sz, sz)

dx = rebin(x, sz, sz) - rebin(1#x, sz, sz)
dy = rebin(y, sz, sz) - rebin(1#y, sz, sz)
dz = rebin(z, sz, sz) - rebin(1#z, sz, sz)
delt = sqrt(dx"2 + dy”2 + dz"2)

pe = marr * marr_1/ delt
;- diagonal elements are now infinity, and shouldn't be counted

anyways
ind = indgen(sz)
pelind,ind] =0

.- total and correct for double counting
pe = total(pe) / 2.

VVVVVVVVVVVVVVVVVYVYVYVYVYVYV

Page 3 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4506
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29125&goto=67082#msg_67082
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67082
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

In short, this calculates the distance between every particle pair,
and stores it in a 2D array. It then calculates the PE contribution
between each of these pairs, zeroes out the diagonal (because a
particle doesn't have any pe due to interaction with itself), totals
it, and divides by 2 (since each pair was counted twice)

Like you said, though, this wouldn't work with 100k elements (the

arrays would be 10710 elements large). Some people might try breaking
up the array into small chunks (say of 100 elements each), calculate

the PE of these chunks, and then patch that all together at the end.

Its kind of a mess though (you still end up with nested loops, but

they have 1073 instead of 10”5 iterations). For these types of

problems, IDL doesn't seem to have a great solution (save for the

ability to call external C programs to do the heavy lifting)

A more efficient algorithm, if you can get away with it, is to ignore

the contribution to the potential energy from pairs of particles very

far away from one another. In this case, you can use histograms to
efficiently index nearby objects. This turns a n"2 algorithm into an

essentially linear one. Seehttp://www.dfanning.com/code_tips/slowloops.html

VVVVVVVVVVVVVVVVVYVYVYVYVYVYV

chris

do you have a recommendation for where to go to learn how to use a C/C+
+ program inside an IDL program? that seems like it would solve my
problem.

Subject: Re: Avoiding a FOR loop in calculation of SPH potential energy
Posted by Michael Galloy on Tue, 23 Jun 2009 22:16:03 GMT

View Forum Message <> Reply to Message

On Jun 23, 1:39 pm, cody <codyras...@gmail.com> wrote:

> do you have a recommendation for where to go to learn how to use a C/C+
> + program inside an IDL program? that seems like it would solve my

> problem.

Get Ronn Kling's book *Calling C from IDL*:

http://www.amazon.com/exec/obidos/redirect?link_code=as2&
;path=ASIN/0967127017&tag=harmonicfunct-20&camp=1789 &creative=9325

Mike
www.michaelgalloy.com
Associate Research Scientist
Tech-X Corporation

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5698
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29125&goto=67081#msg_67081
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67081
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: Avoiding a FOR loop in calculation of SPH potential energy
Posted by Jeremy Bailin on Wed, 24 Jun 2009 04:20:15 GMT

View Forum Message <> Reply to Message

On Jun 23, 2:48 am, cody <codyras...@gmail.com> wrote:
i have an SPH simulation with snapshots in time that are represented
as structures in idl. the structures have mass, density, position etc.
for every particle in the simulation. i'm trying to get a vector that
represents the total potential energy at each snapshot. i have an
outer FOR loop that loops through each snapshot file and this part is
fine, i don't really want to change that. but i have an inner loop for
calculating the PE that must calculate the total potential energy felt
by each particle from every other particle without double counting. to
do that, i just loop over a dummy variable j from 0 to the maximum
particle ident -1 and make a sub list of particles where ident > j.
this way, i'm not double counting and it's not n*2 time. but it's
still way too slow for a 100k particle sim.

now i'm fairly certain there's a way to speed this up considerably
using IDL's strengths, but i'm a c++ programmer, so that's the way i
think. can someone help me out?

here's my code as it stands now:
PRO exportenergy, enditer=enditer, deliter=deliter, root=root

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

> first get the total number of particles
> startiter = 1000

> n = (enditer - startiter)/deliter

> m=0

> G=3.93935d-7 ;SPH units

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

arr = DBLARR(5, n)
for i=0L,(n-1) do begin
iter = i*deliter + startiter
filename = root + "' + STRING(iter,format='(10)")
readsdf,filename,s
arr[0,i] = sdf_getdouble(filename,"tpos")
arr[1,i] = 0.5*total(s.mass*s.vx"2)
arr[2,i] = 0.5*total(s.mass*s.vy"2)
arr[3,i] = 0.5*total(s.mass*s.vz"2)

;PE part starts here
pn = max(s.ident)
PE=0.0
for j=0L,pn-1 do begin
sub = where(s.ident gt j)
PE = PE + G*s[j].mass*total(s[sub].mass/sqrt((s[j].x-s[sub].x)"2+
(s[j]-y-s[sub].y)*2+(s[j].z-s[sub].z)"2))

Page 5 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29125&goto=67078#msg_67078
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67078
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> print,’just computed ' + string(j,format='(10)") + ' PE="+
> string(PE)

> endfor
> arr4,i] = PE
> endfor

Do you need to use direct summation? Tree potential energies aren't
bad (though you need to use a smaller opening angle than for tree
forces to get the same accuracy), and will reduce it to O(N log N).

-Jeremy.

Page 6 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

