
Subject: Re: Technique for "method_missing" in IDL objects
Posted by David Fanning on Fri, 17 Jul 2009 16:22:17 GMT
View Forum Message <> Reply to Message

Paul van Delst writes:

> I'm stringing together a bunch of different objects into a container. When I define
> objects I always define an "Inspect" method so I can have a lookee at the internals of the
> objects (like the ruby inspect method). However, the inspect method for the container
> simply loops over the objects that have been placed in it calling their inspect methods.
> So, if I reach an object that does not have an inspect method, is there a technique to
> pre-determine if I can even call the method to avoid the
>
> % Attempt to call undefined procedure/function: 'OBJ::INSPECT'
>
> error that I get?
>
> Ruby provides a "method_missing" method to enable one to handle this sort of thing. Does
> IDL have any sort of equivalent? Looking at the various ROUTINE_INFO,
RESOLVE_ROUTINE
> help, they don't appear to be that reliable.

OBJ_HASMETHOD might work:

 http://www.dfanning.com/code_tips/hasmethod.html

Cheers,

David

--
David Fanning, Ph.D.
Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.dfanning.com/
Sepore ma de ni thui. ("Perhaps thou speakest truth.")

Subject: Re: Technique for "method_missing" in IDL objects
Posted by mankoff on Fri, 17 Jul 2009 16:55:32 GMT
View Forum Message <> Reply to Message

On Jul 17, 12:20 pm, Paul van Delst <paul.vande...@noaa.gov> wrote:
> Hello,
>
> I'm stringing together a bunch of different objects into a container. When I define
> objects I always define an "Inspect" method so I can have a lookee at the internals of the
> objects (like the ruby inspect method). However, the inspect method for the container
> simply loops over the objects that have been placed in it calling their inspect methods.

Page 1 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29212&goto=67259#msg_67259
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67259
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5004
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29212&goto=67258#msg_67258
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67258
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> So, if I reach an object that does not have an inspect method, is there a technique to
> pre-determine if I can even call the method to avoid the
>
> % Attempt to call undefined procedure/function: 'OBJ::INSPECT'
>
> error that I get?
>
> Ruby provides a "method_missing" method to enable one to handle this sort of thing. Does
> IDL have any sort of equivalent? Looking at the various ROUTINE_INFO,
RESOLVE_ROUTINE
> help, they don't appear to be that reliable.
>
> cheers,
>
> paulv

If a top level object has an INSPECT method, then it will always be
found in a parent. I'm not sure if IDL objects have this ability, but
can the top level INSPECT check to see if it was called by itself or a
child? If so, and you never call it explicitly, then if a child is
running the top level INSPECT it implies the child does not have its
own INSPECT.

 -k.

Subject: Re: Technique for "method_missing" in IDL objects
Posted by Paul Van Delst[1] on Fri, 17 Jul 2009 18:07:34 GMT
View Forum Message <> Reply to Message

David Fanning wrote:
> Paul van Delst writes:
>
>> I'm stringing together a bunch of different objects into a container. When I define
>> objects I always define an "Inspect" method so I can have a lookee at the internals of the
>> objects (like the ruby inspect method). However, the inspect method for the container
>> simply loops over the objects that have been placed in it calling their inspect methods.
>> So, if I reach an object that does not have an inspect method, is there a technique to
>> pre-determine if I can even call the method to avoid the
>>
>> % Attempt to call undefined procedure/function: 'OBJ::INSPECT'
>>
>> error that I get?
>>
>> Ruby provides a "method_missing" method to enable one to handle this sort of thing. Does
>> IDL have any sort of equivalent? Looking at the various ROUTINE_INFO,
RESOLVE_ROUTINE
>> help, they don't appear to be that reliable.

Page 2 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29212&goto=67255#msg_67255
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67255
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> OBJ_HASMETHOD might work:
>
> http://www.dfanning.com/code_tips/hasmethod.html

Ah! Perfect. That's exactly what I was looking for!

cheers,

paulv

Subject: Re: Technique for "method_missing" in IDL objects
Posted by Paul Van Delst[1] on Fri, 17 Jul 2009 18:15:14 GMT
View Forum Message <> Reply to Message

mankoff wrote:
> On Jul 17, 12:20 pm, Paul van Delst <paul.vande...@noaa.gov> wrote:
>> Hello,
>>
>> I'm stringing together a bunch of different objects into a container. When I define
>> objects I always define an "Inspect" method so I can have a lookee at the internals of the
>> objects (like the ruby inspect method). However, the inspect method for the container
>> simply loops over the objects that have been placed in it calling their inspect methods.
>> So, if I reach an object that does not have an inspect method, is there a technique to
>> pre-determine if I can even call the method to avoid the
>>
>> % Attempt to call undefined procedure/function: 'OBJ::INSPECT'
>>
>> error that I get?
>>
>> Ruby provides a "method_missing" method to enable one to handle this sort of thing. Does
>> IDL have any sort of equivalent? Looking at the various ROUTINE_INFO,
RESOLVE_ROUTINE
>> help, they don't appear to be that reliable.
>>
>> cheers,
>>
>> paulv
>
> If a top level object has an INSPECT method, then it will always be
> found in a parent. I'm not sure if IDL objects have this ability, but
> can the top level INSPECT check to see if it was called by itself or a
> child? If so, and you never call it explicitly, then if a child is
> running the top level INSPECT it implies the child does not have its
> own INSPECT.

Umm... not sure I follow. FWIW, here's my container Inspect method:

Page 3 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29212&goto=67254#msg_67254
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67254
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

PRO LBL_Input::Inspect, $
 Verbose=Verbose, $; Input keyword
 Debug=Debug ; Input keyword

 IF (KEYWORD_SET(Debug)) THEN HELP, /ROUTINES
 HELP, self, /OBJECTS

 IF (KEYWORD_SET(Verbose)) THEN BEGIN
 obj = self->Get(/ALL, COUNT=n_Objs)
 IF (n_Objs EQ 0) THEN RETURN
 ; Loop over contained objects
 FOR n = 0L, n_Objs-1L DO BEGIN
 obj[n]->Inspect, Verbose=Verbose, Debug=Debug
 ENDFOR
 ENDIF

END ; PRO LBL_Input::Inspect

And it's the call to the individual object inspect methods in the loop,

 obj[n]->Inspect, Verbose=Verbose, Debug=Debug

that can cause the constipation. I changed the above line to

 IF (OBJ_HASMETHOD(obj[n], 'INSPECT')) THEN $
 obj[n]->Inspect, Verbose=Verbose, Debug=Debug

and now all is wonderful! Woohoo!

:o)

cheers,

paulv

Page 4 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

