Subject: Re: Technique for "method_missing" in IDL objects
Posted by David Fanning on Fri, 17 Jul 2009 16:22:17 GMT

View Forum Message <> Reply to Message

Paul van Delst writes:

I'm stringing together a bunch of different objects into a container. When | define

objects | always define an "Inspect" method so | can have a lookee at the internals of the
objects (like the ruby inspect method). However, the inspect method for the container
simply loops over the objects that have been placed in it calling their inspect methods.
So, if | reach an object that does not have an inspect method, is there a technique to
pre-determine if | can even call the method to avoid the

% Attempt to call undefined procedure/function: 'OBJ::INSPECT"

error that | get?

VVVVVVVYVYVYVYVYV

Ruby provides a "method_missing" method to enable one to handle this sort of thing. Does
> |IDL have any sort of equivalent? Looking at the various ROUTINE_INFO,
RESOLVE_ROUTINE

> help, they don't appear to be that reliable.

OBJ_HASMETHOD might work:
http://www.dfanning.com/code_tips/hasmethod.html

Cheers,

David

-[;avid Fanning, Ph.D.

Fanning Software Consulting, Inc.

Coyote's Guide to IDL Programming: http://www.dfanning.com/
Sepore ma de ni thui. ("Perhaps thou speakest truth.")

Subject: Re: Technique for "method_missing" in IDL objects
Posted by mankoff on Fri, 17 Jul 2009 16:55:32 GMT

View Forum Message <> Reply to Message

On Jul 17, 12:20 pm, Paul van Delst <paul.vande...@noaa.gov> wrote:
Hello,

I'm stringing together a bunch of different objects into a container. When | define

objects | always define an "Inspect” method so | can have a lookee at the internals of the
objects (like the ruby inspect method). However, the inspect method for the container
simply loops over the objects that have been placed in it calling their inspect methods.

VVVVYVYV

Page 1 of 4 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29212&goto=67259#msg_67259
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67259
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5004
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29212&goto=67258#msg_67258
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67258
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

So, if | reach an object that does not have an inspect method, is there a technique to
pre-determine if | can even call the method to avoid the

% Attempt to call undefined procedure/function: 'OBJ::INSPECT"
error that | get?
Ruby provides a "method_missing" method to enable one to handle this sort of thing. Does
IDL have any sort of equivalent? Looking at the various ROUTINE_INFO,
ESOLVE_ROUTINE
help, they don't appear to be that reliable.

cheers,

VVVVVIOyVyVvVyVvyyyyvyyvyy

paulv

If a top level object has an INSPECT method, then it will always be
found in a parent. I'm not sure if IDL objects have this ability, but
can the top level INSPECT check to see if it was called by itself or a
child? If so, and you never call it explicitly, then if a child is

running the top level INSPECT it implies the child does not have its
own INSPECT.

-k.

Subject: Re: Technique for "method_missing" in IDL objects
Posted by Paul VVan Delst[1] on Fri, 17 Jul 2009 18:07:34 GMT

View Forum Message <> Reply to Message

David Fanning wrote:

> Paul van Delst writes:

>

>> |'m stringing together a bunch of different objects into a container. When | define

>> objects | always define an "Inspect" method so | can have a lookee at the internals of the
>> objects (like the ruby inspect method). However, the inspect method for the container

>> simply loops over the objects that have been placed in it calling their inspect methods.
>> So, if | reach an object that does not have an inspect method, is there a technique to

>> pre-determine if | can even call the method to avoid the

>>

>> 9 Attempt to call undefined procedure/function: 'OBJ::INSPECT"
>>

>> error that | get?

>>

>> Ruby provides a "method_missing” method to enable one to handle this sort of thing. Does
>> |DL have any sort of equivalent? Looking at the various ROUTINE_INFO,
RESOLVE_ROUTINE

>> help, they don't appear to be that reliable.

Page 2 of 4 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29212&goto=67255#msg_67255
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67255
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>
>
>

Ah

OBJ_HASMETHOD might work:
http://www.dfanning.com/code_tips/hasmethod.html

I Perfect. That's exactly what | was looking for!

cheers,

pal

ulv

Subject: Re: Technique for "method_missing" in IDL objects
Posted by Paul VVan Delst[1] on Fri, 17 Jul 2009 18:15:14 GMT

Vie

w Forum Message <> Reply to Message

mankoff wrote:

>

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

On Jul 17, 12:20 pm, Paul van Delst <paul.vande...@noaa.gov> wrote:
Hello,

I'm stringing together a bunch of different objects into a container. When | define

objects | always define an "Inspect” method so | can have a lookee at the internals of the
objects (like the ruby inspect method). However, the inspect method for the container
simply loops over the objects that have been placed in it calling their inspect methods.
So, if | reach an object that does not have an inspect method, is there a technique to
pre-determine if | can even call the method to avoid the

% Attempt to call undefined procedure/function: 'OBJ::INSPECT"
error that | get?

Ruby provides a "method_missing" method to enable one to handle this sort of thing. Does
IDL have any sort of equivalent? Looking at the various ROUTINE_INFO,

RESOLVE_ROUTINE

help, they don't appear to be that reliable.

cheers,

paulv
If a top level object has an INSPECT method, then it will always be
found in a parent. I'm not sure if IDL objects have this ability, but
can the top level INSPECT check to see if it was called by itself or a
child? If so, and you never call it explicitly, then if a child is
running the top level INSPECT it implies the child does not have its
own INSPECT.

Umm... not sure | follow. FWIW, here's my container Inspect method:

Pag

e 3 of 4 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29212&goto=67254#msg_67254
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67254
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

PRO LBL_Input::Inspect, $
Verbose=Verbose, $; Input keyword
Debug=Debug ; Input keyword

IF (KEYWORD_SET(Debug)) THEN HELP, /ROUTINES
HELP, self, (OBJECTS

IF (KEYWORD_SET(Verbose)) THEN BEGIN
obj = self->Get(/ALL, COUNT=n_0Objs)
IF (n_Objs EQ 0) THEN RETURN
; Loop over contained objects
FOR n=0L, n_Objs-1L DO BEGIN
obj[n]->Inspect, Verbose=Verbose, Debug=Debug
ENDFOR
ENDIF

END ; PRO LBL_Input::Inspect

And it's the call to the individual object inspect methods in the loop,
obj[n]->Inspect, Verbose=Verbose, Debug=Debug
that can cause the constipation. | changed the above line to

IF (OBJ_HASMETHOD(obj[n], INSPECT')) THEN $
obj[n]->Inspect, Verbose=Verbose, Debug=Debug

and now all is wonderful! Woohoo!
:0)
cheers,

paulv

Page 4 of 4 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

