Subject: IDL excels in debugging??? Do you know something | dont?
Posted by Russ Welti on Thu, 18 May 1995 07:00:00 GMT

View Forum Message <> Reply to Message

Wally Gross wrote:

>|t's nice to know that a well written IDL program can be faster than

>the corresponding C program, but on the projects I've been on speed
>wasn't the most important concern. Getting the system developed
>and debugged was always the biggest problem. In that area, IDL really
>excels though systems like Turbo C for the PC are terrific for
>development and debugging also. IMHO the real challenge with IDL is
>creating maintainable code.

| agree about the maintainable code problem. Being interpreted (IMHO)
tends to make any language at risk for quick and dirty programming --
prototypes and experimental code changes that "never got documented”.
But then we chose IDL *because* we wanted rapid prototyping capabilities ;)

Of course | blame myself if | fall into bad habits, but IDL is not very
consistent in its overall design and methods for accomplishing various
programming tasks. For example, there are multiple ways to accomplish
several fundamental operations, sometimes undocumented, and without
the kind of overall simplicity of concept that characterizes, for example,
object-oriented paradigms. But IDL *evolved*; it was not "designed".

In IDL, online help is really a must, because the lack of consistency
means one must constantly refer to each procedure/function to remember
how that particular creature works... Early in my exposure to IDL | read
here that "IDL is a hacker's language”. | have often reflected on that...

| would REALLY take exception to the statement that IDL is debuggable.

If you have used a good Unix debugger, it is hard to even compare the total
lack of debugging tools (usable anyway) in IDL. You may notice this is a
hot button for me. Breakpoints are a JOKE. Even perl has a very useful,
line-oriented debugger which RSI should use as a model, | believe.

idltool is an admirable attempt, but unwieldy and unreliable.

The most useful debugging technigue (other than the good ole PRINT statement)
| know of is the following 2 line routine, offered to me once by
rep2857@sbsun0010.sbrc.hac.com (Mike Schienle)

; BREAK.PRO: a "debugging" routine. it always causes an error. Period.

: A call to 'break’ in IDL will break IDL and return to the routine

; which called it, allowing you to examine all variables' values at

; the point it was called. There is generally no way to continue execution,
; you must "RETALL & XMANAGER" (aargh!). R. Welti; from M.Schienle

Page 1 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=763
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=2923&goto=4265#msg_4265
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=4265
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

PRO
END

In fact, | would love to read a discussion of what other people are using
for debugging techniques / tools.
/

Russ Welti /-\
(c-9)
University of Washington \-/
Molecular Biotechnology /
PO Box 352145 /-\
Seattle, WA 98195 (a-t)
rwelti@u.washington.edu \-/
(206) 685 3840 voice (206) 685 7344 FAX /

http://chroma.mbt.washington.edu/graphics/gif/russ.gif

Subject: Re: IDL excels in debugging??? Do you know something | dont?
Posted by chase on Fri, 19 May 1995 07:00:00 GMT

View Forum Message <> Reply to Message

>>>> > "Mark" == Mark Rivers <rivers@cars3.uchicago.edu> writes:
In article <D8sBMD.20o0@midway.uchicago.edu> rivers@cars3.uchicago.edu (Mark Rivers)
writes:

>> The most useful debugging technique (other than the good ole PRINT statement)
>> | know of is the following 2 line routine, offered to me once by

>> rep2857@sbsun0010.sbrc.hac.com (Mike Schienle)

>>

>> : BREAK.PRO: a "debugging" routine. it always causes an error. Period.
>> ; A call to 'break’ in IDL will break IDL and return to the routine

>> ; which called it, allowing you to examine all variables' values at

>> ; the point it was called. There is generally no way to continue execution,
>> ;you must "RETALL & XMANAGER" (aargh!). R. Welti; from M.Schienle
>>

>> PRO

>> END

>>

>> |n fact, | would love to read a discussion of what other people are using
>> for debugging techniques / tools.

Mark> Why not just use the STOP statement in your routine? It stops
Mark> IDL, leaving you at the command line, allowing you to examine
Mark> all variables' values, etc. without generating the error. Once
Mark> you are done examining variable, etc. you can continue on by
Mark> just typing .CON.

Page 2 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=283
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=2923&goto=4345#msg_4345
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=4345
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

STOP will not work with event callback routines. The above does work
when you install callback routines with xmanager. Breakpoints do not
work in callback routines either. When a stop or breakpoint is
encountered the IDL execution context is in XMANAGER and not the
routine where you wanted to stop.

The above break.pro is a clever idea. After causing the break you can
skip over it using .skip.

For my own debugging of callback routines, | print out a undefined
variable (e.g., "print,dummyvar") within the routine where | want to
cause a break. After the stop in execution | would define the
variable and issue a .continue.

One thing of note regarding debugging. There was a comment that one
can do a lot more in standard machine code debuggers (e.g. using xdb
to debug compiled C code).

Even though there are some problems with IDL's handling of
breakpoints, there are advantages to debugging in IDL over C debuggers
or debuggers in general for machine language programes. Once
execution is stopped, | can look at any variables, change variable
values (even to new types), recompile other programs (without having
to "exit the debugger" and lose data), even define new variables

(until the symbol talble for the procedure fills up), execute other
procedures and functions. The C debugger that | use does _not_ let me
call functions and procedures within the current context, define new
variables, change variables (to a new type/size), recompile. | have
heard of interactive C debugger/interpreters, but | do not know what
their full capabilities are. Without an interpreter, the variety of
expressions that one can use in a C debugger is not as rich as what
can be used via the command line of the IDL interpreter.

In my experience, debugging IDL code is much easier than debugging C
code (or whatever your favorite High level compiled language might

be). IDL just needs some small improvements in breakpoint handling
and the addition of examining variables within different execution
contexts along the calling chain (i.e. examining variables in the

calling routine and above. | think this may already be provided in

the undocumented function routine_names. Perhaps it is supported in
IDL v4.07).

Chris

Page 3 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Bldg 24-E188

The Applied Physics Laboratory
The Johns Hopkins University
Laurel, MD 20723-6099
(301)953-6000 x8529
chris.chase@jhuapl.edu

Subject: Re: IDL excels in debugging??? Do you know something | dont?
Posted by zawodny on Mon, 22 May 1995 07:00:00 GMT

View Forum Message <> Reply to Message

In article <3pg7pi$blu@newsstand.cit.cornell.edu> patterso@astrosun.tn.cornell.edu (Tim
Patterson) writes:
> Mark Rivers (rivers@cars3.uchicago.edu) wrote:
>
: >In fact, | would love to read a discussion of what other people are using
: >for debugging techniques / tools.

: at the command line, allowing you to examine all variables' values, etc.
- without generating the error. Once you are done examining variable, etc. you
: can continue on by just typing .CON.

>

> | just use control C and .con (or xmanager in a Windows situation)

> to debug my code. But it's not pretty :)

> I'd love it if the step command would actaully just oprint the relevant

> line of code to the screen so | knew where | was in the code.

>

>
>
>
> : Why not just use the STOP statement in your routine? It stops IDL, leaving you
>
>
>

Control C is a bit difficult to use in practice since you really
cannot control where you stop. Try stopping in a routine that spends
most of its time in other subroutines and you'll see what | mean.

Editing a proceedure to add a STOP gets tiresome after awhile. My
biggest gripe when it comes to debugging IDL is that the reported line
number is usually wrong. This may be due in part to my programming
habits, but it seems that whenever | use an @file to include common
blocks and/or 'standard' code or if | have mulltiple statements on the
same line (using the & operator) IDL cannot figure out where the
offending line is when it bombs. | end up adding a series of lines

like

print,'l am at A'
and recompiling and rerunning the code to narrow down where the error

is. 1 guess it would be nice to have true interactive breakpoint
setting. A routine like

Page 4 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=170
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=2923&goto=4320#msg_4320
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=4320
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

SET_BREAK,module_name,line_number {,/cancel_break}

which could be called interactively either before or during (after a
STOP or programming error halts execution) would be really useful and
speed code development (for me at least). | have no idea what this
would do for execution speed (IDL and other interpreted languages are
slow enough as it is [reading things like "A well written IDL program
can actually run faster than a C program" has kept me from learning

C, but I digress further]).

Joseph M. Zawodny (KO4LW) NASA Langley Research Center
Internet: j.m.zawodny@larc.nasa.gov MS-475, Hampton VA, 23681-0001
TCP/IP: kodlw@ko4lw.ampr.org Packet: ko4dlw@n4hog.va.usa.na

Page 5 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

