
Subject: Re: Speedy Julia Set Fractals
Posted by Caleb on Sun, 06 Sep 2009 21:45:41 GMT
View Forum Message <> Reply to Message

On Sep 6, 4:44 pm, Caleb <calebwhe...@gmail.com> wrote:
> Hello!
>
> I have a quick question about some fractal work I am doing. I know
> that doing matrix multiplications and histograms can exponentiate
> processes that are historically done with for loops. I have been
> trying to think of a way to do this with a fractal program I just
> wrote. Here is a snippet of the code that I want to speed up:
>
> <code>
>
> ; Loop through and do calculations on each point:
> FOR i = 0, x_size-1 DO BEGIN
>
> FOR j = 0, y_size-1 DO BEGIN
>
> ; Initialize number of iterations:
> num = 0
>
> ; Complex value of the current coordinate point:
> z = COMPLEX(FLOAT(i-X_OFFSET)/(X_OFFSET*SCALE),FLOAT(j-Y_OFFSET) /
> (Y_OFFSET*SCALE))
>
> ; Calculate value of F(z) at above z:
> z1 = z^K + c
>
> ; Take magnitude of the above value (z1):
> mag = ABS(z1^K + c)
>
> ; Do loop until mag is greater than threshold or max iterations
> have been calculated:
> WHILE ((mag LE THRESH) AND (num LT MAX_ITERATION)) DO BEGIN
>
> ; Re-Calculate value of F(z) at above z1:
> z1 = z1^K + c
>
> ; Take magnitude of the above value (z1):
> mag = ABS(z1^K + c)
>
> ; Increment iteration variable:
> num++
>
> ENDWHILE
>

Page 1 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6919
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29477&goto=67913#msg_67913
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67913
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> ; Value of matrix is set to iteration number:
> grid(i,j) = num
>
> ENDFOR
>
> ENDFOR
>
> </code>
>
> My problem is that I have a while loop for every iteration of my
> matrix which can run up to 256 iterations if need be. Can I speed of
> these calculations without going to multiple cores?
>
> Oh and if you need more of the code let me know and I'll post it.
>
> Thanks!
>
> Caleb Wherry

Whoops, thought there were "code" tags. Guess not!

- Caleb

Subject: Re: Speedy Julia Set Fractals
Posted by Chris[6] on Sun, 06 Sep 2009 22:33:49 GMT
View Forum Message <> Reply to Message

On Sep 6, 11:44 am, Caleb <calebwhe...@gmail.com> wrote:
> Hello!
>
> I have a quick question about some fractal work I am doing. I know
> that doing matrix multiplications and histograms can exponentiate
> processes that are historically done with for loops. I have been
> trying to think of a way to do this with a fractal program I just
> wrote. Here is a snippet of the code that I want to speed up:
>
> <code>
>
> ; Loop through and do calculations on each point:
> FOR i = 0, x_size-1 DO BEGIN
>
> FOR j = 0, y_size-1 DO BEGIN
>
> ; Initialize number of iterations:
> num = 0
>
> ; Complex value of the current coordinate point:

Page 2 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6539
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29477&goto=67911#msg_67911
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67911
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> z = COMPLEX(FLOAT(i-X_OFFSET)/(X_OFFSET*SCALE),FLOAT(j-Y_OFFSET) /
> (Y_OFFSET*SCALE))
>
> ; Calculate value of F(z) at above z:
> z1 = z^K + c
>
> ; Take magnitude of the above value (z1):
> mag = ABS(z1^K + c)
>
> ; Do loop until mag is greater than threshold or max iterations
> have been calculated:
> WHILE ((mag LE THRESH) AND (num LT MAX_ITERATION)) DO BEGIN
>
> ; Re-Calculate value of F(z) at above z1:
> z1 = z1^K + c
>
> ; Take magnitude of the above value (z1):
> mag = ABS(z1^K + c)
>
> ; Increment iteration variable:
> num++
>
> ENDWHILE
>
> ; Value of matrix is set to iteration number:
> grid(i,j) = num
>
> ENDFOR
>
> ENDFOR
>
> </code>
>
> My problem is that I have a while loop for every iteration of my
> matrix which can run up to 256 iterations if need be. Can I speed of
> these calculations without going to multiple cores?
>
> Oh and if you need more of the code let me know and I'll post it.
>
> Thanks!
>
> Caleb Wherry

This might work (untested)

xs = rebin(indgen(x_size), x_size, y_size)
ys = rebin(1#indgen(y_size), x_size, y_size)
 z = COMPLEX(FLOAT(xs-X_OFFSET)/(X_OFFSET*SCALE),FLOAT(ys-Y_OFFSE T)/

Page 3 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

(Y_OFFSET*SCALE))

grid = intarr(x_size, y_size)
todo = grid + 1

for num = 0, num lt maxiter, 1 do begin
 z1 = z^K + c
 mag = ABS(z1^K + c)

 hit = (mag le thresh)
 grid = num * todo * hit + grid * (1 - todo)
 todo = 1 - hit
endfor

This avoids the nested loop over x indices and y indices. It pays an
extra penalty of running the iteration on every pixel MAXITER times.
This code assumes that MAG decreases at every step, even after THRESH
is crossed. I'm not sure if this is guaranteed to be true or not,
depending on K and C. Unless most pixels are supposed to be iterated
far fewer than MAXITER times, my guess is that this code will be
faster

Chris

Subject: Re: Speedy Julia Set Fractals
Posted by Jeremy Bailin on Tue, 08 Sep 2009 04:23:29 GMT
View Forum Message <> Reply to Message

On Sep 6, 6:33 pm, Chris <beaum...@ifa.hawaii.edu> wrote:
> On Sep 6, 11:44 am, Caleb <calebwhe...@gmail.com> wrote:
>
>
>
>
>
>> Hello!
>
>> I have a quick question about some fractal work I am doing. I know
>> that doing matrix multiplications and histograms can exponentiate
>> processes that are historically done with for loops. I have been
>> trying to think of a way to do this with a fractal program I just
>> wrote. Here is a snippet of the code that I want to speed up:
>
>> <code>
>
>> ; Loop through and do calculations on each point:
>> FOR i = 0, x_size-1 DO BEGIN

Page 4 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29477&goto=67892#msg_67892
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67892
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>> FOR j = 0, y_size-1 DO BEGIN
>
>> ; Initialize number of iterations:
>> num = 0
>
>> ; Complex value of the current coordinate point:
>> z = COMPLEX(FLOAT(i-X_OFFSET)/(X_OFFSET*SCALE),FLOAT(j-Y_OFFSET) /
>> (Y_OFFSET*SCALE))
>
>> ; Calculate value of F(z) at above z:
>> z1 = z^K + c
>
>> ; Take magnitude of the above value (z1):
>> mag = ABS(z1^K + c)
>
>> ; Do loop until mag is greater than threshold or max iterations
>> have been calculated:
>> WHILE ((mag LE THRESH) AND (num LT MAX_ITERATION)) DO BEGIN
>
>> ; Re-Calculate value of F(z) at above z1:
>> z1 = z1^K + c
>
>> ; Take magnitude of the above value (z1):
>> mag = ABS(z1^K + c)
>
>> ; Increment iteration variable:
>> num++
>
>> ENDWHILE
>
>> ; Value of matrix is set to iteration number:
>> grid(i,j) = num
>
>> ENDFOR
>
>> ENDFOR
>
>> </code>
>
>> My problem is that I have a while loop for every iteration of my
>> matrix which can run up to 256 iterations if need be. Can I speed of
>> these calculations without going to multiple cores?
>
>> Oh and if you need more of the code let me know and I'll post it.
>
>> Thanks!
>

Page 5 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> Caleb Wherry
>
> This might work (untested)
>
> xs = rebin(indgen(x_size), x_size, y_size)
> ys = rebin(1#indgen(y_size), x_size, y_size)
> z = COMPLEX(FLOAT(xs-X_OFFSET)/(X_OFFSET*SCALE),FLOAT(ys-Y_OFFSE T)/
> (Y_OFFSET*SCALE))
>
> grid = intarr(x_size, y_size)
> todo = grid + 1
>
> for num = 0, num lt maxiter, 1 do begin
> z1 = z^K + c
> mag = ABS(z1^K + c)
>
> hit = (mag le thresh)
> grid = num * todo * hit + grid * (1 - todo)
> todo = 1 - hit
> endfor
>
> This avoids the nested loop over x indices and y indices. It pays an
> extra penalty of running the iteration on every pixel MAXITER times.
> This code assumes that MAG decreases at every step, even after THRESH
> is crossed. I'm not sure if this is guaranteed to be true or not,
> depending on K and C. Unless most pixels are supposed to be iterated
> far fewer than MAXITER times, my guess is that this code will be
> faster
>
> Chris

You can be clever about only performing the calculation for the pixels
that haven't yet converged... here's a (also untested) modified
version of your for loop that should be more efficient in that case:

for num = 0, maxiter-1 do begin
 unconverged = where(todo eq 1)
 z1 = z[unconverged]^K + c
 mag = ABS(z1^K + c)

 hit = (mag le thresh)
 grid[unconverged] = num * hit
 todo[unconverged] = 1 - hit
 if total(todo,/int) eq 0 then break
endfor

-Jeremy.

Page 6 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: Speedy Julia Set Fractals
Posted by m_schellens on Tue, 15 Sep 2009 11:22:34 GMT
View Forum Message <> Reply to Message

On 8 Sep., 06:23, Jeremy Bailin <astroco...@gmail.com> wrote:
> On Sep 6, 6:33 pm, Chris <beaum...@ifa.hawaii.edu> wrote:
>
>
>
>> On Sep 6, 11:44 am, Caleb <calebwhe...@gmail.com> wrote:
>
>>> Hello!
>
>>> I have a quick question about some fractal work I am doing. I know
>>> that doing matrix multiplications and histograms can exponentiate
>>> processes that are historically done with for loops. I have been
>>> trying to think of a way to do this with a fractal program I just
>>> wrote. Here is a snippet of the code that I want to speed up:
>
>>> <code>
>
>>> ; Loop through and do calculations on each point:
>>> FOR i = 0, x_size-1 DO BEGIN
>
>>> FOR j = 0, y_size-1 DO BEGIN
>
>>> ; Initialize number of iterations:
>>> num = 0
>
>>> ; Complex value of the current coordinate point:
>>> z = COMPLEX(FLOAT(i-X_OFFSET)/(X_OFFSET*SCALE),FLOAT(j-Y_OFFSET) /
>>> (Y_OFFSET*SCALE))
>
>>> ; Calculate value of F(z) at above z:
>>> z1 = z^K + c
>
>>> ; Take magnitude of the above value (z1):
>>> mag = ABS(z1^K + c)
>
>>> ; Do loop until mag is greater than threshold or max iterations
>>> have been calculated:
>>> WHILE ((mag LE THRESH) AND (num LT MAX_ITERATION)) DO BEGIN
>
>>> ; Re-Calculate value of F(z) at above z1:
>>> z1 = z1^K + c
>
>>> ; Take magnitude of the above value (z1):
>>> mag = ABS(z1^K + c)
>

Page 7 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5313
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29477&goto=67985#msg_67985
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67985
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>> ; Increment iteration variable:
>>> num++
>
>>> ENDWHILE
>
>>> ; Value of matrix is set to iteration number:
>>> grid(i,j) = num
>
>>> ENDFOR
>
>>> ENDFOR
>
>>> </code>
>
>>> My problem is that I have a while loop for every iteration of my
>>> matrix which can run up to 256 iterations if need be. Can I speed of
>>> these calculations without going to multiple cores?
>
>>> Oh and if you need more of the code let me know and I'll post it.
>
>>> Thanks!
>
>>> Caleb Wherry
>
>> This might work (untested)
>
>> xs = rebin(indgen(x_size), x_size, y_size)
>> ys = rebin(1#indgen(y_size), x_size, y_size)
>> z = COMPLEX(FLOAT(xs-X_OFFSET)/(X_OFFSET*SCALE),FLOAT(ys-Y_OFFSE T)/
>> (Y_OFFSET*SCALE))
>
>> grid = intarr(x_size, y_size)
>> todo = grid + 1
>
>> for num = 0, num lt maxiter, 1 do begin
>> z1 = z^K + c
>> mag = ABS(z1^K + c)
>
>> hit = (mag le thresh)
>> grid = num * todo * hit + grid * (1 - todo)
>> todo = 1 - hit
>> endfor
>
>> This avoids the nested loop over x indices and y indices. It pays an
>> extra penalty of running the iteration on every pixel MAXITER times.
>> This code assumes that MAG decreases at every step, even after THRESH
>> is crossed. I'm not sure if this is guaranteed to be true or not,
>> depending on K and C. Unless most pixels are supposed to be iterated

Page 8 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> far fewer than MAXITER times, my guess is that this code will be
>> faster
>
>> Chris
>
> You can be clever about only performing the calculation for the pixels
> that haven't yet converged... here's a (also untested) modified
> version of your for loop that should be more efficient in that case:
>
> for num = 0, maxiter-1 do begin
> unconverged = where(todo eq 1)
> z1 = z[unconverged]^K + c
> mag = ABS(z1^K + c)
>
> hit = (mag le thresh)
> grid[unconverged] = num * hit
> todo[unconverged] = 1 - hit
> if total(todo,/int) eq 0 then break
> endfor
>
> -Jeremy.

For an example look at:
http://gnudatalanguage.sourceforge.net/appleman.html

Cheers,
Marc

Page 9 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

