Subject: Re: Help, no improvement in FFT speed on a multiprocessor system
Posted by Kenneth P. Bowman on Mon, 07 Sep 2009 13:40:36 GMT

View Forum Message <> Reply to Message

In article <4aa34391%1@darkstar>, "Marco" <null@null.net> wrote:

I'm running IDL 7.1 on a Linux 2.6. This is an HP quad processor with each
processors having 6 cores for 24 cores total.

Doing large 2-D FFTs (>8Kx8K) | get no benefit from the extra processors.

| can vary the number used in IDL from 24 down to 1, and see that the
number actually of processors actually showing a load is the correct number,
but from 4 to 24 threads, the speed is the same and no faster than Matlab,
which uses only a single processor out of the 24.

I've tried varied IDL_CPU_TPOOL_NTHREADS and IDL_CPU_TPOOL_MIN_ELTS, but
have not been able to improve the results.

Any suggestions?
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Thanks in advance,
Do your array dimensions have small prime factors (2, 3, 4, or 5)?

Ken Bowman

Subject: Re: Help, no improvement in FFT speed on a multiprocessor system
Posted by Marco on Mon, 07 Sep 2009 19:58:27 GMT

View Forum Message <> Reply to Message

The arrays are Nx8192 on a side with N a power of 2.

| increased N until the speed dropped of a cliff. Presumably cache/memory
thrashing.

"Kenneth P. Bowman" <k-bowman@null.edu> wrote in message
news:k-bowman-5D1FE7.08403607092009@news.tamu.edu...

> |n article <4aa34391%1@darkstar>, "Marco" <null@null.net> wrote:

>

>> I'm running IDL 7.1 on a Linux 2.6. This is an HP quad processor with
>> each

>> processors having 6 cores for 24 cores total.

>>

>> Doing large 2-D FFTs (>8Kx8K) I get no benefit from the extra

>> processors.

>> | can vary the number used in IDL from 24 down to 1, and see that the
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>> number actually of processors actually showing a load is the correct
>> number,

>> put from 4 to 24 threads, the speed is the same and no faster than
>> Matlab,

>> which uses only a single processor out of the 24.

>> |'ve tried varied IDL_CPU_TPOOL_NTHREADS and IDL_CPU_TPOOL_MIN_ELTS, but
>> have not been able to improve the results.

>> Any suggestions?
>> Thanks in advance,
Do your array dimensions have small prime factors (2, 3, 4, or 5)?

Ken Bowman

Subject: Re: Help, no improvement in FFT speed on a multiprocessor system
Posted by Kenneth P. Bowman on Mon, 07 Sep 2009 21:30:36 GMT

View Forum Message <> Reply to Message

In article <4aa56605%1@darkstar>, "Marco" <null@null.net> wrote:
The arrays are Nx8192 on a side with N a power of 2.

| increased N until the speed dropped of a cliff. Presumably cache/memory
thrashing.

"Kenneth P. Bowman" <k-bowman@null.edu> wrote in message
news:k-bowman-5D1FE7.08403607092009@news.tamu.edul...

>> |n article <4aa34391%1@darkstar>, "Marco" <null@null.net> wrote:

>>

>>> |'m running IDL 7.1 on a Linux 2.6. This is an HP quad processor with
>>> each

>>> processors having 6 cores for 24 cores total.

>>>

>>> Doing large 2-D FFTs (>8Kx8K) | get no benefit from the extra

>>> processors.

>
>
>
>
>
>
>
>

| don't know how the Intel cache architecture works, but on some
processors (e.g., IBM Power), a cache miss causes a whole cache
line to be loaded from memory. If you are working on large arrays
and taking large strides through memory, every memory access
can cause a cache miss. This has the effect of completely
destroying the advantages of having a cache. Arrays dimensioned
by powers of two can be the worst cases.
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| don't know an easy solution. You could do N 1-D FFTs of size
8192, transpose the output, and then do 8192 1-D FFTs of size N.
That is, "manually" make a 2-D FFT by looping over the second
dimension. It might possibly be faster than doing a 2-D FFT with
miserable cache performance.

Ken Bowman
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