Subject: Re: Help, no improvement in FFT speed on a multiprocessor system
Posted by Kenneth P. Bowman on Mon, 07 Sep 2009 13:40:36 GMT

View Forum Message <> Reply to Message

In article <4aa34391%1@darkstar>, "Marco" <null@null.net> wrote:

I'm running IDL 7.1 on a Linux 2.6. This is an HP quad processor with each
processors having 6 cores for 24 cores total.

Doing large 2-D FFTs (>8Kx8K) | get no benefit from the extra processors.

| can vary the number used in IDL from 24 down to 1, and see that the
number actually of processors actually showing a load is the correct number,
but from 4 to 24 threads, the speed is the same and no faster than Matlab,
which uses only a single processor out of the 24.

I've tried varied IDL_CPU_TPOOL_NTHREADS and IDL_CPU_TPOOL_MIN_ELTS, but
have not been able to improve the results.

Any suggestions?

VVVVVVVVVYVYVYVYVYVYV

Thanks in advance,
Do your array dimensions have small prime factors (2, 3, 4, or 5)?

Ken Bowman

Subject: Re: Help, no improvement in FFT speed on a multiprocessor system
Posted by Marco on Mon, 07 Sep 2009 19:58:27 GMT

View Forum Message <> Reply to Message

The arrays are Nx8192 on a side with N a power of 2.

| increased N until the speed dropped of a cliff. Presumably cache/memory
thrashing.

"Kenneth P. Bowman" <k-bowman@null.edu> wrote in message
news:k-bowman-5D1FE7.08403607092009@news.tamu.edu...

> |n article <4aa34391%1@darkstar>, "Marco" <null@null.net> wrote:

>

>> I'm running IDL 7.1 on a Linux 2.6. This is an HP quad processor with
>> each

>> processors having 6 cores for 24 cores total.

>>

>> Doing large 2-D FFTs (>8Kx8K) I get no benefit from the extra

>> processors.

>> | can vary the number used in IDL from 24 down to 1, and see that the

Page 1 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3522
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29479&goto=67901#msg_67901
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67901
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6808
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29479&goto=67898#msg_67898
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67898
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> number actually of processors actually showing a load is the correct
>> number,

>> put from 4 to 24 threads, the speed is the same and no faster than
>> Matlab,

>> which uses only a single processor out of the 24.

>> |'ve tried varied IDL_CPU_TPOOL_NTHREADS and IDL_CPU_TPOOL_MIN_ELTS, but
>> have not been able to improve the results.

>> Any suggestions?
>> Thanks in advance,
Do your array dimensions have small prime factors (2, 3, 4, or 5)?

Ken Bowman

Subject: Re: Help, no improvement in FFT speed on a multiprocessor system
Posted by Kenneth P. Bowman on Mon, 07 Sep 2009 21:30:36 GMT

View Forum Message <> Reply to Message

In article <4aa56605%1@darkstar>, "Marco" <null@null.net> wrote:
The arrays are Nx8192 on a side with N a power of 2.

| increased N until the speed dropped of a cliff. Presumably cache/memory
thrashing.

"Kenneth P. Bowman" <k-bowman@null.edu> wrote in message
news:k-bowman-5D1FE7.08403607092009@news.tamu.edul...

>> |n article <4aa34391%1@darkstar>, "Marco" <null@null.net> wrote:

>>

>>> |'m running IDL 7.1 on a Linux 2.6. This is an HP quad processor with
>>> each

>>> processors having 6 cores for 24 cores total.

>>>

>>> Doing large 2-D FFTs (>8Kx8K) | get no benefit from the extra

>>> processors.

>
>
>
>
>
>
>
>

| don't know how the Intel cache architecture works, but on some
processors (e.g., IBM Power), a cache miss causes a whole cache
line to be loaded from memory. If you are working on large arrays
and taking large strides through memory, every memory access
can cause a cache miss. This has the effect of completely
destroying the advantages of having a cache. Arrays dimensioned
by powers of two can be the worst cases.

Page 2 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3522
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29479&goto=67897#msg_67897
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=67897
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

| don't know an easy solution. You could do N 1-D FFTs of size
8192, transpose the output, and then do 8192 1-D FFTs of size N.
That is, "manually" make a 2-D FFT by looping over the second
dimension. It might possibly be faster than doing a 2-D FFT with
miserable cache performance.

Ken Bowman

Page 3 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

