Subject: Re: Smoothing 3D array with periodic boundaries: what am | missing?
Posted by Jeremy Bailin on Fri, 25 Sep 2009 03:52:00 GMT

View Forum Message <> Reply to Message

On Sep 24, 1:19 pm, Luds <lud...@uvic.ca> wrote:

I've been trying for a couple days now to write a Gaussian-smoothing
algorithm to smooth a cube of (scalar) data with periodic boundary
conditions (this is needed for my task since "structure" in the data
that straddles an edge of the cube appears on two+ sides of the box).
I've made it so far, but now can't seem to get around excessive For-
loop's...

For example, say the box of scalars values runs from (0,1) in x,y, and
z, and has N”3 points. To smooth at point (X,y,z) in the box |
generate a 3-D Gaussian with its centroid (mean) at point x,y,z:

Gauss_field = rebin(periodic_gauss_func(X,[[sig],[X]]),N,N,N) * $
rebin(reform(periodic_gauss_func(X,[[sig],[y]]),
1,N),N,N,N) * $
rebin(reform(periodic_gauss_func(X,[[sig],[z]]),
1,1,N),N,N,N)

where periodic_gauss_func is a 1-D Gaussian kernel function that wraps
around the box edge, X=(0,1,...N-1)... sig=sigma. (i.e. this just does
separate Gaussian smoothing along each direction and combines the
result).

Then the smoothed field at point (x,y,z) is something like
Smoothed(x,y,z) = TOTAL(TOTAL(scalar_field*Gauss_field,1))

What | can't figure out is an efficient way to do this for all (x,y,z)
- for a N=1024"3 grid it takes a couple seconds to generate

Gauss_field. Realistically, I'll have N=1024"3, so For-loops are
pretty much useless(???), and memory is a bit of an issue too.

Does anyone know of any "canned" routines to do this type of Gaussian
smoothing? Or of an efficient way to convolve my 3D Gaussian field
with my scalar field for all (x,y,z)? (I must stress that the Gaussian
kernel must not be affected by, or truncated at, the box edge)

Many thanks!!

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYVYV

Aaron

Wouldn't the Fourier convolution theorem approach work here? FFT your
data cube, FFT your 3D Gaussian kernel, multiply them, and reverse FFT
them back out? You may need to judiciously use TEMPORARY and/or the /

Page 1 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29586&goto=68213#msg_68213
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=68213
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

OVERWRITE keyword if memory is an issue.

-Jeremy.

Subject: Re: Smoothing 3D array with periodic boundaries: what am | missing?
Posted by Luds on Mon, 28 Sep 2009 06:56:33 GMT

View Forum Message <> Reply to Message

On Sep 25, 5:52 am, Jeremy Bailin <astroco...@gmail.com> wrote:

> On Sep 24, 1:19 pm, Luds <lud...@uvic.ca> wrote:

>

>

>

>> |'ve been trying for a couple days now to write a Gaussian-smoothing
>> algorithm to smooth a cube of (scalar) data with periodic boundary
>> conditions (this is needed for my task since "structure” in the data

>> that straddles an edge of the cube appears on two+ sides of the box).
>> |'ve made it so far, but now can't seem to get around excessive For-
>> |oop's...

>

>> For example, say the box of scalars values runs from (0,1) in x,y, and
>> z, and has N3 points. To smooth at point (x,y,z) in the box |

>> generate a 3-D Gaussian with its centroid (mean) at point x,y,z:

>

>> Gauss_field = rebin(periodic_gauss_func(X,[[sig],[x]]),N,N,N) * $
>> rebin(reform(periodic_gauss_func(X,[[sig],[y]]),
>> 1,N),N,N,N) * $

>> rebin(reform(periodic_gauss_func(X,[[sig],[z]]),
>> 1,1,N),N,N,N)

>

>> where periodic_gauss_func is a 1-D Gaussian kernel function that wraps
>> around the box edge, X=(0,1,...N-1)... sig=sigma. (i.e. this just does

>> separate Gaussian smoothing along each direction and combines the
>> result).

>

>> Then the smoothed field at point (x,y,z) is something like

>

>> Smoothed(x,y,z) = TOTAL(TOTAL(scalar_field*Gauss_field,1))

>

>> What | can't figure out is an efficient way to do this for all (x,y,z)

>> - for a N=1024"3 grid it takes a couple seconds to generate

>> Gauss_field. Realistically, I'll have N=1024"3, so For-loops are

>> pretty much useless(???), and memory is a bit of an issue too.

>

>> Does anyone know of any "canned" routines to do this type of Gaussian
>> smoothing? Or of an efficient way to convolve my 3D Gaussian field

>> with my scalar field for all (x,y,z)? (I must stress that the Gaussian

Page 2 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6917
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29586&goto=68202#msg_68202
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=68202
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> kernel must not be affected by, or truncated at, the box edge)

>

>> Many thanks!!

>

>> Aaron

>

> Wouldn't the Fourier convolution theorem approach work here? FFT your
> data cube, FFT your 3D Gaussian kernel, multiply them, and reverse FFT
> them back out? You may need to judiciously use TEMPORARY and/or the /
> OVERWRITE keyword if memory is an issue.

>

> -Jeremy.

Yeah, | guess this is the way to go after all.

| had tried this but didn't really trust my smoothed result. E.g. |
attempted to smooth a slab of my data cube with smoothed_field=fft(fft
(field)*gaussian_filter,1), but only the upper half of the smooth

field resembled the original image; the lower half was an inverted
backwards copy of the upper half (at least that's what it looked like

to my eye). (BTW, it's a Gaussian random field, CDM power-spectrum).

| guess I'll keep messing around with the IDL's fft. I've read on the
help pages that the lowest frequencies in the fft should appear
something like a spike in the middle of the fft'd image... | see a
spike in the corner (0,0) of the image, which means | probably
misinterpreting something simple.

Thanks!!

Subject: Re: Smoothing 3D array with periodic boundaries: what am | missing?
Posted by pgrigis on Mon, 28 Sep 2009 14:10:57 GMT

View Forum Message <> Reply to Message

On Sep 28, 2:56 am, Luds <lud...@uvic.ca> wrote:

> On Sep 25, 5:52 am, Jeremy Bailin <astroco...@gmail.com> wrote:

>

>

>

>> On Sep 24, 1:19 pm, Luds <lud...@uvic.ca> wrote:

>

>>> |'ve been trying for a couple days now to write a Gaussian-smoothing
>>> algorithm to smooth a cube of (scalar) data with periodic boundary
>>> conditions (this is needed for my task since "structure” in the data
>>> that straddles an edge of the cube appears on two+ sides of the box).
>>> |'ve made it so far, but now can't seem to get around excessive For-
>>> |oop's...

Page 3 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6214
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29586&goto=68196#msg_68196
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=68196
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>

>>>
>>>
>>>
>>>

>>>

>>>

>>>
>>>
>>>
>>>

>>>
>>>
>>>
>>>
>
>>>
>
>>>
>
>>
>>
>>
>>
>
>>

VVVVYVYVYVYV

b

For example, say the box of scalars values runs from (0,1) in x,y, and
z, and has N”3 points. To smooth at point (X,y,z) in the box |
generate a 3-D Gaussian with its centroid (mean) at point x,y,z:

Gauss_field = rebin(periodic_gauss_func(X,[[sig],[X]]),N,N,N) * $
rebin(reform(periodic_gauss_func(X,[[sig],[y]]),
1,N),N,N,N) * $
rebin(reform(periodic_gauss_func(X,[[sig],[z]]),
1,1,N),N,N,N)

where periodic_gauss_func is a 1-D Gaussian kernel function that wraps
around the box edge, X=(0,1,...N-1)... sig=sigma. (i.e. this just does
separate Gaussian smoothing along each direction and combines the
result).

Then the smoothed field at point (X,y,z) is something like
Smoothed(x,y,z) = TOTAL(TOTAL(scalar_field*Gauss_field,1))

What | can't figure out is an efficient way to do this for all (x,y,z)
- for a N=1024"3 grid it takes a couple seconds to generate
Gauss_field. Realistically, I'll have N=1024"3, so For-loops are
pretty much useless(???), and memory is a bit of an issue too.

Does anyone know of any "canned" routines to do this type of Gaussian
smoothing? Or of an efficient way to convolve my 3D Gaussian field
with my scalar field for all (x,y,z)? (I must stress that the Gaussian
kernel must not be affected by, or truncated at, the box edge)

Many thanks!!

Aaron
Wouldn't the Fourier convolution theorem approach work here? FFT your
data cube, FFT your 3D Gaussian kernel, multiply them, and reverse FFT
them back out? You may need to judiciously use TEMPORARY and/or the /
OVERWRITE keyword if memory is an issue.

-Jeremy.

Yeah, | guess this is the way to go after all.

had tried this but didn't really trust my smoothed result. E.g. |

attempted to smooth a slab of my data cube with smoothed_field=fft(fft
(field)*gaussian_filter,1), but only the upper half of the smooth
field resembled the original image; the lower half was an inverted

ackwards copy of the upper half (at least that's what it looked like

Page

4 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

to my eye). (BTW, it's a Gaussian random field, CDM power-spectrum).

>
>

> | guess I'll keep messing around with the IDL's fft. I've read on the
> help pages that the lowest frequencies in the fft should appear

> something like a spike in the middle of the fft'd image... | see a

> spike in the corner (0,0) of the image, which means | probably

> misinterpreting something simple.

Don't worry - the ordering of the frequencies in FFT nearly
always is set like that - if that's confusing, a shift of

half the size of the array will set them the way you expect
them to be (with O frequency in the middle of the array).

To see the effect - take the 1-dim FFT of a gaussian.
The result is also a gaussian - but you'll need a shift
of half the size of the array to have it properly centered
on the middle of the array.

Ciao,
Paolo

>
> Thanksl!!

Subject: Re: Smoothing 3D array with periodic boundaries: what am | missing?
Posted by Luds on Mon, 28 Sep 2009 18:18:05 GMT

View Forum Message <> Reply to Message

On Sep 28, 4:10 pm, Paolo <pgri...@gmail.com> wrote:

> On Sep 28, 2:56 am, Luds <lud...@uvic.ca> wrote:

>

>

>

>> On Sep 25, 5:52 am, Jeremy Bailin <astroco...@gmail.com> wrote:

>

>>> On Sep 24, 1:19 pm, Luds <lud...@uvic.ca> wrote:

>

>>>> |'ve been trying for a couple days now to write a Gaussian-smoothing
>>>> algorithm to smooth a cube of (scalar) data with periodic boundary
>>>> conditions (this is needed for my task since "structure" in the data
>>>> that straddles an edge of the cube appears on two+ sides of the box).
>>>> [|'ve made it so far, but now can't seem to get around excessive For-
>>>> |oop's...

>

>>>> For example, say the box of scalars values runs from (0,1) in x,y, and

Page 5 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6917
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29586&goto=68193#msg_68193
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=68193
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>>
>>>>
>
>>>>
>>>>
>>>>
>>>>
>>>>
>
>>>>
>>>>
>>>>
>>>>
>
>>>>
>
>>>>
>
>>>>
>>>>
>>>>
>>>>
>
>>>>
>>>>
>>>>
>>>>
>
>>>>
>
>>>>
>
>>>
>>>
>>>
>>>
>
>>>
>

z, and has N”3 points. To smooth at point (x,y,z) in the box |
generate a 3-D Gaussian with its centroid (mean) at point x,y,z:

Gauss_field = rebin(periodic_gauss_func(X,[[sig],[X]]),N,N,N) * $
rebin(reform(periodic_gauss_func(X,[[sig].[y]]),
1,N),N,N,N) * $
rebin(reform(periodic_gauss_func(X,[[sig].[z]]),
1,1,N),N,N,N)

where periodic_gauss_func is a 1-D Gaussian kernel function that wraps
around the box edge, X=(0,1,...N-1)... sig=sigma. (i.e. this just does
separate Gaussian smoothing along each direction and combines the
result).

Then the smoothed field at point (x,y,z) is something like
Smoothed(x,y,z) = TOTAL(TOTAL(scalar_field*Gauss_field,1))

What | can't figure out is an efficient way to do this for all (x,y,z)
- for a N=1024"3 grid it takes a couple seconds to generate

Gauss_field. Realistically, I'll have N=1024"3, so For-loops are
pretty much useless(???), and memory is a bit of an issue too.

Does anyone know of any "canned" routines to do this type of Gaussian
smoothing? Or of an efficient way to convolve my 3D Gaussian field
with my scalar field for all (x,y,z)? (I must stress that the Gaussian
kernel must not be affected by, or truncated at, the box edge)

Many thanks!!

Aaron
Wouldn't the Fourier convolution theorem approach work here? FFT your
data cube, FFT your 3D Gaussian kernel, multiply them, and reverse FFT
them back out? You may need to judiciously use TEMPORARY and/or the /
OVERWRITE keyword if memory is an issue.

-Jeremy.

>> Yeah, | guess this is the way to go after all.

>
>> |
>> a

had tried this but didn't really trust my smoothed result. E.qg. |
ttempted to smooth a slab of my data cube with smoothed_field=fft(fft

>> (field)*gaussian_filter,1), but only the upper half of the smooth

>
>> Db

\%

field resembled the original image; the lower half was an inverted

ackwards copy of the upper half (at least that's what it looked like

>> to my eye). (BTW, it's a Gaussian random field, CDM power-spectrum).

>

Page 6 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> | guess I'll keep messing around with the IDL's fft. I've read on the
>> help pages that the lowest frequencies in the fft should appear

>> something like a spike in the middle of the fft'd image... | see a
>> spike in the corner (0,0) of the image, which means | probably

>> misinterpreting something simple.

Don't worry - the ordering of the frequencies in FFT nearly
always is set like that - if that's confusing, a shift of

half the size of the array will set them the way you expect
them to be (with O frequency in the middle of the array).

To see the effect - take the 1-dim FFT of a gaussian.
The result is also a gaussian - but you'll need a shift
of half the size of the array to have it properly centered
on the middle of the array.

Ciao,
Paolo

VVVVVVVVVYVYVYVYVYVYVYV

>> Thanks!!
>
>

Thank Paolo. Yeah, | figure out the shift of the fft frequencies and
now everything is a expected.

Page 7 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

