
Subject: Re: Where to find 64bit IDL 6.3?
Posted by pgrigis on Fri, 16 Oct 2009 14:21:33 GMT
View Forum Message <> Reply to Message

On Oct 16, 5:45 am, Laurens <laur...@turboduif.nl> wrote:
> Hi Folks,
>
> I'm running in serious memory issues on 32bit windows version of IDL
> 6.3. Just trying to allocate an array of UINTS with dimensions
> 500x500x500 happens to be too much. I've already tried Memory Mapping
> by using shmmap and shmvar functions to let those arrays be written to
> harddisk, but without any luck, despite the system having 8 cpu's and
> 24GB of memory...

That's definitely a OS problem - in other OSes IDL 32 can
allocate a 500 cubed dblarr without problems. The rule is:
on IDL 32 bit the maximum size of an array is about 2^31
bytes (2GB). The max number of elements is about 2^31/S,
where S is the size of one elements in byte (2 for INT, 4 for
FLOAT etc.).

Ciao,
Paolo

>
> Now I'd like to try out the 64bit version of IDL. Since version 6.3,
> 64 bit should be present. The problem is that I can't find the
> installer anywhere...Does someone still have it around or can someone
> point me in the right direction here?
>
> Thanks in advance!
>
> Cheers, Laurens

Subject: Re: Where to find 64bit IDL 6.3?
Posted by Karl[1] on Fri, 16 Oct 2009 17:34:46 GMT
View Forum Message <> Reply to Message

This topic has been covered here quite a bit.

First, with 24GB of memory, you should really be running a 64-bit OS
to take advantage of it. Only "server" additions of 32-bit Windows
running apps that use PAE/AWE tricks to address past 32 bits can use
more than 4GB.

That being said, you should still be able to allocate 250,000,000
bytes with 32-bit IDL on a 32-bit OS MAYBE.

Page 1 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6214
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29613&goto=68278#msg_68278
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=68278
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5533
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29613&goto=68272#msg_68272
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=68272
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Here's why:

32-bit Windows (generally) maps the kernel stuff into the high 2GB of
the 32-bit (4GB) address space, leaving user processes the low 2GB.
Windows also uses up quite a bit of the lower 2GB of virtual address
space to map shared DLL's and a number of other things. So, you can
expect a user process to have access to 1-1.5 GB of virtual address
space.

Your array allocation requires contiguous virtual memory, so you need
to sort of get lucky to find a contiguous block of the size you are
requesting. Virtual memory can get fragmented over time and while
there may be a total amount of free virtual address space exceeding
your requirement, there may not be a free contiguous area that large.

You can take some steps to improve your chances to find a big
contiguous block:

- Does your IDL application allocate other large arrays? If so, try
allocating the big one first, before doing anything else.
- Restart IDL between attempts in case your app has a leak that would
fragment the address space.
- Sometimes Windows can load DLL's that are shared between processes
into the middle of a large block of free contiguous virtual address
space, fragmenting it. Common culprits a few years ago were those
applets that come with graphics cards that give you bells and whistles
added to your windows' title bar. Might try disabling those. There
are tools out there that can help you see what DLL's are mapped into a
process and where. That can give you a clue as to what else might be
fragmenting your memory.
- See if you can use the "3GB" switch in your edition of Windows.
This gives the kernel 1GB and the user 3GB of the virtual address
space. Some people have had some luck with this.

But even after all that, there is no guarantee of success.

Going to a 64-bit OS/IDL solves the problem decisively by giving you a
huge virtual address space, which is just as important as being able
to use the RAM you are not using now.

I'm not sure why you'd bother to put 24GB in a machine with a 32-bit
OS unless running a server or special apps.

-karl

On Oct 16, 8:21 am, Paolo <pgri...@gmail.com> wrote:
> On Oct 16, 5:45 am, Laurens <laur...@turboduif.nl> wrote:

Page 2 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>> Hi Folks,
>
>> I'm running in serious memory issues on 32bit windows version of IDL
>> 6.3. Just trying to allocate an array of UINTS with dimensions
>> 500x500x500 happens to be too much. I've already tried Memory Mapping
>> by using shmmap and shmvar functions to let those arrays be written to
>> harddisk, but without any luck, despite the system having 8 cpu's and
>> 24GB of memory...
>
> That's definitely a OS problem - in other OSes IDL 32 can
> allocate a 500 cubed dblarr without problems. The rule is:
> on IDL 32 bit the maximum size of an array is about 2^31
> bytes (2GB). The max number of elements is about 2^31/S,
> where S is the size of one elements in byte (2 for INT, 4 for
> FLOAT etc.).
>
> Ciao,
> Paolo
>
>
>
>> Now I'd like to try out the 64bit version of IDL. Since version 6.3,
>> 64 bit should be present. The problem is that I can't find the
>> installer anywhere...Does someone still have it around or can someone
>> point me in the right direction here?
>
>> Thanks in advance!
>
>> Cheers, Laurens
>
>

Subject: Re: Where to find 64bit IDL 6.3?
Posted by Laurens on Mon, 19 Oct 2009 08:20:21 GMT
View Forum Message <> Reply to Message

On 16 okt, 19:34, Karl <karl.w.schu...@gmail.com> wrote:
> This topic has been covered here quite a bit.
>
> First, with 24GB of memory, you should really be running a 64-bit OS
> to take advantage of it. Only "server" additions of 32-bit Windows
> running apps that use PAE/AWE tricks to address past 32 bits can use
> more than 4GB.
>
> That being said, you should still be able to allocate 250,000,000
> bytes with 32-bit IDL on a 32-bit OS MAYBE.

Page 3 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5737
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29613&goto=68269#msg_68269
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=68269
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> Here's why:
>
> 32-bit Windows (generally) maps the kernel stuff into the high 2GB of
> the 32-bit (4GB) address space, leaving user processes the low 2GB.
> Windows also uses up quite a bit of the lower 2GB of virtual address
> space to map shared DLL's and a number of other things. So, you can
> expect a user process to have access to 1-1.5 GB of virtual address
> space.
>
> Your array allocation requires contiguous virtual memory, so you need
> to sort of get lucky to find a contiguous block of the size you are
> requesting. Virtual memory can get fragmented over time and while
> there may be a total amount of free virtual address space exceeding
> your requirement, there may not be a free contiguous area that large.
>
> You can take some steps to improve your chances to find a big
> contiguous block:
>
> - Does your IDL application allocate other large arrays? If so, try
> allocating the big one first, before doing anything else.
> - Restart IDL between attempts in case your app has a leak that would
> fragment the address space.
> - Sometimes Windows can load DLL's that are shared between processes
> into the middle of a large block of free contiguous virtual address
> space, fragmenting it. Common culprits a few years ago were those
> applets that come with graphics cards that give you bells and whistles
> added to your windows' title bar. Might try disabling those. There
> are tools out there that can help you see what DLL's are mapped into a
> process and where. That can give you a clue as to what else might be
> fragmenting your memory.
> - See if you can use the "3GB" switch in your edition of Windows.
> This gives the kernel 1GB and the user 3GB of the virtual address
> space. Some people have had some luck with this.
>
> But even after all that, there is no guarantee of success.
>
> Going to a 64-bit OS/IDL solves the problem decisively by giving you a
> huge virtual address space, which is just as important as being able
> to use the RAM you are not using now.
>
> I'm not sure why you'd bother to put 24GB in a machine with a 32-bit
> OS unless running a server or special apps.
>
> -karl
>
> On Oct 16, 8:21 am, Paolo <pgri...@gmail.com> wrote:
>

Page 4 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> On Oct 16, 5:45 am, Laurens <laur...@turboduif.nl> wrote:
>
>>> Hi Folks,
>
>>> I'm running in serious memory issues on 32bit windows version of IDL
>>> 6.3. Just trying to allocate an array of UINTS with dimensions
>>> 500x500x500 happens to be too much. I've already tried Memory Mapping
>>> by using shmmap and shmvar functions to let those arrays be written to
>>> harddisk, but without any luck, despite the system having 8 cpu's and
>>> 24GB of memory...
>
>> That's definitely a OS problem - in other OSes IDL 32 can
>> allocate a 500 cubed dblarr without problems. The rule is:
>> on IDL 32 bit the maximum size of an array is about 2^31
>> bytes (2GB). The max number of elements is about 2^31/S,
>> where S is the size of one elements in byte (2 for INT, 4 for
>> FLOAT etc.).
>
>> Ciao,
>> Paolo
>
>>> Now I'd like to try out the 64bit version of IDL. Since version 6.3,
>>> 64 bit should be present. The problem is that I can't find the
>>> installer anywhere...Does someone still have it around or can someone
>>> point me in the right direction here?
>
>>> Thanks in advance!
>
>>> Cheers, Laurens
>
>
First, thanks for replying.
Sorry to not clarify that, but of course the machine is running 64bit
windows. No use of using all that power with 32bit...I already was
that far lol...
It is a medical reconstruction server and while the OS is 64 bit, I
just can't seem to find a 64bit-enabled version of IDL 6.3.

In short, I'm trying this:

shmmap, '', [500,500,500], TYPE=12, GET_NAME=SHMName
pVar = ptr_new(shmvar(SHMName))

That piece of code just crashes IDL with the message that not enough
storage space is available to allocate the memory array...
So, does anyone know where to find those "old" 64-bit IDL versions, or
-maybe even better- have any clue to how to do this job effectively?

Page 5 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

cheers

Subject: Re: Where to find 64bit IDL 6.3?
Posted by Laurens on Mon, 19 Oct 2009 08:24:30 GMT
View Forum Message <> Reply to Message

On 16 okt, 19:34, Karl <karl.w.schu...@gmail.com> wrote:
> This topic has been covered here quite a bit.
>
> First, with 24GB of memory, you should really be running a 64-bit OS
> to take advantage of it. Only "server" additions of 32-bit Windows
> running apps that use PAE/AWE tricks to address past 32 bits can use
> more than 4GB.
>
> That being said, you should still be able to allocate 250,000,000
> bytes with 32-bit IDL on a 32-bit OS MAYBE.
>
> Here's why:
>
> 32-bit Windows (generally) maps the kernel stuff into the high 2GB of
> the 32-bit (4GB) address space, leaving user processes the low 2GB.
> Windows also uses up quite a bit of the lower 2GB of virtual address
> space to map shared DLL's and a number of other things. So, you can
> expect a user process to have access to 1-1.5 GB of virtual address
> space.
>
> Your array allocation requires contiguous virtual memory, so you need
> to sort of get lucky to find a contiguous block of the size you are
> requesting. Virtual memory can get fragmented over time and while
> there may be a total amount of free virtual address space exceeding
> your requirement, there may not be a free contiguous area that large.
>
> You can take some steps to improve your chances to find a big
> contiguous block:
>
> - Does your IDL application allocate other large arrays? If so, try
> allocating the big one first, before doing anything else.
> - Restart IDL between attempts in case your app has a leak that would
> fragment the address space.
> - Sometimes Windows can load DLL's that are shared between processes
> into the middle of a large block of free contiguous virtual address
> space, fragmenting it. Common culprits a few years ago were those
> applets that come with graphics cards that give you bells and whistles
> added to your windows' title bar. Might try disabling those. There
> are tools out there that can help you see what DLL's are mapped into a
> process and where. That can give you a clue as to what else might be
> fragmenting your memory.

Page 6 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5737
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29613&goto=68368#msg_68368
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=68368
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> - See if you can use the "3GB" switch in your edition of Windows.
> This gives the kernel 1GB and the user 3GB of the virtual address
> space. Some people have had some luck with this.
>
> But even after all that, there is no guarantee of success.
>
> Going to a 64-bit OS/IDL solves the problem decisively by giving you a
> huge virtual address space, which is just as important as being able
> to use the RAM you are not using now.
>
> I'm not sure why you'd bother to put 24GB in a machine with a 32-bit
> OS unless running a server or special apps.
>
> -karl
>
> On Oct 16, 8:21 am, Paolo <pgri...@gmail.com> wrote:
>
>> On Oct 16, 5:45 am, Laurens <laur...@turboduif.nl> wrote:
>
>>> Hi Folks,
>
>>> I'm running in serious memory issues on 32bit windows version of IDL
>>> 6.3. Just trying to allocate an array of UINTS with dimensions
>>> 500x500x500 happens to be too much. I've already tried Memory Mapping
>>> by using shmmap and shmvar functions to let those arrays be written to
>>> harddisk, but without any luck, despite the system having 8 cpu's and
>>> 24GB of memory...
>
>> That's definitely a OS problem - in other OSes IDL 32 can
>> allocate a 500 cubed dblarr without problems. The rule is:
>> on IDL 32 bit the maximum size of an array is about 2^31
>> bytes (2GB). The max number of elements is about 2^31/S,
>> where S is the size of one elements in byte (2 for INT, 4 for
>> FLOAT etc.).
>
>> Ciao,
>> Paolo
>
>>> Now I'd like to try out the 64bit version of IDL. Since version 6.3,
>>> 64 bit should be present. The problem is that I can't find the
>>> installer anywhere...Does someone still have it around or can someone
>>> point me in the right direction here?
>
>>> Thanks in advance!
>
>>> Cheers, Laurens
>
>

Page 7 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

In addition;
if I try to allocate that amount of memory, it will succeed initially.
I can do that command for four times before I get the "unable to
allocate memory" message. Problem is, I need multiple variables in
memory that big...at least I think. Chances are there is some leakage
somewhere, but then again; how the hell do you find that in this
amount of code? Any ways to get a listing of variables using up the
memory?

Page 8 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

