Subject: Re: What is the problem?
Posted by Chris[6] on Wed, 28 Oct 2009 06:58:05 GMT
View Forum Message <> Reply to Message

On Oct 27, 8:28 pm, Ruby <wuqiao...@gmail.com> wrote: > I wrote a simple program to caculate the distance between two location > (lon1,lat1), (lon2,lat2) > > function earth_dis_,lon1,lon2,lat1,lat2 > > b1 = !pi*lat1/180.0> b2 = !pi*lat2/180.0> a1 = !pi*lon1/180.0> a2 = !pi*lon2/180.0dis = 6378.1*acos(cos(b1)*cos(b2)*cos(a1-a2)+sin(b1)*sin(b2))> > RETURN, dis > END > But When I tried to test the program, the results turned to be like > IDL> print, earth dis(4.0,4.0,4.0,4.0) -NaN > IDL> print, earth_dis(8.0,8.0,8.0,8.0) > 2.20215 > > In both cases, the result should be straightforwardly equal 0. Then > what is the problem with my program or IDL?

Check out the wikipedia entry on great circle distances: http://en.wikipedia.org/wiki/Great-circle distance

The formula you use doesn't work well on a computer with the distance is small (roundoff errors become large). They reference a better formula. Alternatively, use the GCIRC function in the IDL Astronomy user's library.

Chris

Subject: Re: What is the problem?
Posted by penteado on Wed, 28 Oct 2009 11:20:21 GMT
View Forum Message <> Reply to Message

On Oct 28, 4:28 am, Ruby <wuqiao...@gmail.com> wrote:
> I wrote a simple program to caculate the distance between two location
> (lon1,lat1), (lon2,lat2)
>

```
> function earth_dis ,lon1,lon2,lat1,lat2
>
> b1 = !pi*lat1/180.0
> b2 = !pi*lat2/180.0
> a1 = !pi*lon1/180.0
> a2 = !pi*lon2/180.0
> dis = 6378.1*acos(cos(b1)*cos(b2)*cos(a1-a2)+sin(b1)*sin(b2))
> RETURN, dis
> END
> But When I tried to test the program, the results turned to be like
> IDL> print,earth_dis(4.0,4.0,4.0,4.0)
        -NaN
> IDL> print, earth_dis(8.0,8.0,8.0,8.0)
      2.20215
>
> In both cases, the result should be straightforwardly equal 0. Then
> what is the problem with my program or IDL?
```

First, this is unnecessary. There is the built-in function map 2points that does it (and even comes with a default radius).

Second, the problem is precision. To begin with, do not ever do this kind of calculation with floats, as you did. Use doubles.

When you get an NaN, it happens because the roundoff errors make cos (b1)*cos(b2)*cos(a1-a2)+sin(b1)*sin(b2) slighly larger than 1, so there is no acos of it. The other small number is still the result of these errors.

If you use doubles, the problem will be smaller, but this expression will always have problems when the two points are near 0 or 180 degrees. I suppose map_2points already deals with this in some way, and it is probably better to use instead of writing this yourself.

If you must deal with this kind of problem yourself, one possible solution is to change your function to

```
function earth dis ,lon1,lon2,lat1,lat2
b1 = !dpi*lat1/180d0
b2 = !dpi*lat2/180d0
a1 = !dpi*lon1/180d0
a2 = !dpi*lon2/180d0
dis = 6378.1d0*acos(complex(cos(b1)*cos(b2)*cos(a1-a2)+sin(b1)*sin(b2),
0d0))
RETURN, double (dis)
```

Subject: Re: What is the problem? Posted by penteado on Wed, 28 Oct 2009 11:22:52 GMT

View Forum Message <> Reply to Message

On Oct 28, 9:20 am, pp <pp.pente...@gmail.com> wrote:

- > If you use doubles, the problem will be smaller, but this expression
- > will always have problems when the two points are near 0 or 180
- > degrees. I suppose map 2points already deals with this in some way.
- > and it is probably better to use instead of writing this yourself.

I meant "when their distance is near 0 or 180 degrees".

Subject: Re: What is the problem? Posted by Ruby on Thu, 29 Oct 2009 01:56:42 GMT

View Forum Message <> Reply to Message

```
> On Oct 27, 8:28 pm, Ruby <wuqiao...@gmail.com> wrote:
>
>
>> I wrote a simple program to caculate the distance between two location
>> (lon1,lat1), (lon2,lat2)
>
>> function earth_dis ,lon1,lon2,lat1,lat2
>> b1 = !pi*lat1/180.0
>> b2 = !pi*lat2/180.0
>> a1 = !pi*lon1/180.0
>> a2 = !pi*lon2/180.0
\Rightarrow dis = 6378.1*acos(cos(b1)*cos(b2)*cos(a1-a2)+sin(b1)*sin(b2))
>
>> RETURN, dis
>> END
>
>> But When I tried to test the program, the results turned to be like
>> IDL> print, earth_dis(4.0,4.0,4.0,4.0)
         -NaN
>>
>> IDL> print,earth_dis(8.0,8.0,8.0,8.0)
       2.20215
>>
>> In both cases, the result should be straightforwardly equal 0. Then
```

- >> what is the problem with my program or IDL?
- >
- > Check out the wikipedia entry on great circle distances:http://en.wikipedia.org/wiki/Great-circle_distance

>

- > The formula you use doesn't work well on a computer with the distance
- > is small (roundoff errors become large). They reference a better
- > formula. Alternatively, use the GCIRC function in the IDL Astronomy
- > user's library.

>

> Chris

thanks, both of you