
Subject: Re: Larger arrays or more dimensions?
Posted by penteado on Thu, 26 Nov 2009 16:40:32 GMT
View Forum Message <> Reply to Message

On Nov 26, 11:49 am, David Higgins <higgins.da...@gmail.com> wrote:
> I have a large data set which can be organised into sub categories,
> where in each sub category an experimental variable was different.
>
> (For anyone who cares, it's MRI data which are multiple echoes, in
> multiple phases, in multiple dynamics, through multiple RF channels,
> over multiple signal averages.)
>
> The data is essentially a 3D set, repeated over these various degrees
> of freedom ("phases", "dynamics", etc).
>
> Here's my question. In terms of memory management, and program speed,
> would it be better to have a 3D array, and extend the 3rd dimension
> over and over for all these degrees of freedom, or would it be better
> to use a multiple dimension array?
>
> (I shall be preforming FFTs on the data.)
>
> Thanks
> Dave Higgins

Probably both ways could be equally efficient (or equally inefficient,
depending on how you do it), depending on how you organize your
operations on the arrays, and over which slices each operation
depends.

That said, if your problem's "units" are 3D arrays, and you have a set
of those where each 3D array depends on some degrees of freedom, it
would more naturally fit with the use of more dimensions. It would
make the code easier to write and understand, since it would make
explicit how variations in these parameters map to different 3D
arrays. You would not need to keep track yourself of the indexes on
the 3rd dimension that map to each parameter value.

You can make use of the significant conveniences IDL provides for
multiple dimensions (relating to the other recent topic, one of IDL's
greatest strengths): use of 1D indexes in multiple dimension arrays,
array_indices to convert between them, the semantics of vector
indices, several useful functions for those operations (reform, rebin,
replicate, value_locate, where, histogram) and the ease of writing
routines that can handle inputs and outputs of variable dimensions.

For instance, I have used these features to write a routine that
interpolates over an arbitrary number of dimensions of an array with

Page 1 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29828&goto=68828#msg_68828
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=68828
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

an arbitrary (usually larger) number of dimensions, keeping the other
dimensions unaltered.

Two points to keep in mind:

1) The number of dimensions is limited to 8.

2) As your units seem to be 3D arrays, it will probably be better to
keep those 3 dimensions the leftmost. That way, each unit will be
stored contiguously, which will make accessing a unit much more
efficient and simpler to code and read. Also, that way routines that
expect to be given a single one of these units can be given a direct
slice and will work just as if they had been given a 3D array (because
trailing dimensions of length 1 are ignored).

Subject: Re: Larger arrays or more dimensions?
Posted by David Higgins on Sun, 29 Nov 2009 23:45:34 GMT
View Forum Message <> Reply to Message

On 26 Nov, 16:40, pp <pp.pente...@gmail.com> wrote:
> On Nov 26, 11:49 am, David Higgins <higgins.da...@gmail.com> wrote:
>
>
>
>
>
>> I have a large data set which can be organised into sub categories,
>> where in each sub category an experimental variable was different.
>
>> (For anyone who cares, it's MRI data which are multiple echoes, in
>> multiple phases, in multiple dynamics, through multiple RF channels,
>> over multiple signal averages.)
>
>> The data is essentially a 3D set, repeated over these various degrees
>> of freedom ("phases", "dynamics", etc).
>
>> Here's my question. In terms of memory management, and program speed,
>> would it be better to have a 3D array, and extend the 3rd dimension
>> over and over for all these degrees of freedom, or would it be better
>> to use a multiple dimension array?
>
>> (I shall be preforming FFTs on the data.)
>
>> Thanks
>> Dave Higgins
>
> Probably both ways could be equally efficient (or equally inefficient,

Page 2 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6914
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29828&goto=68897#msg_68897
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=68897
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> depending on how you do it), depending on how you organize your
> operations on the arrays, and over which slices each operation
> depends.
>
> That said, if your problem's "units" are 3D arrays, and you have a set
> of those where each 3D array depends on some degrees of freedom, it
> would more naturally fit with the use of more dimensions. It would
> make the code easier to write and understand, since it would make
> explicit how variations in these parameters map to different 3D
> arrays. You would not need to keep track yourself of the indexes on
> the 3rd dimension that map to each parameter value.
>
> You can make use of the significant conveniences IDL provides for
> multiple dimensions (relating to the other recent topic, one of IDL's
> greatest strengths): use of 1D indexes in multiple dimension arrays,
> array_indices to convert between them, the semantics of vector
> indices, several useful functions for those operations (reform, rebin,
> replicate, value_locate, where, histogram) and the ease of writing
> routines that can handle inputs and outputs of variable dimensions.
>
> For instance, I have used these features to write a routine that
> interpolates over an arbitrary number of dimensions of an array with
> an arbitrary (usually larger) number of dimensions, keeping the other
> dimensions unaltered.
>
> Two points to keep in mind:
>
> 1) The number of dimensions is limited to 8.
>
> 2) As your units seem to be 3D arrays, it will probably be better to
> keep those 3 dimensions the leftmost. That way, each unit will be
> stored contiguously, which will make accessing a unit much more
> efficient and simpler to code and read. Also, that way routines that
> expect to be given a single one of these units can be given a direct
> slice and will work just as if they had been given a 3D array (because
> trailing dimensions of length 1 are ignored).

Thanks for the detailed reply. This info is going to help. I have a
related question, regarding reading in the file. I'm using
READ_BINARY, and then making another - sorted - copy of the data using
header data, with regards to our discussion above about dimensions.
But this seems very memory intensive; the data are unpredictable and
the data set might by large. I was wondering about ASSOC but it seems
like the data needs to be already in large chunks (it is not). I've
come across SHMMAP but it seems like a dark art for IDL gurus only. So
I'm back to READ_BINARY, and I'm thinking of writing my own template
structure from header data (BINARY_TEMPLATE would be no good since I
need the program to run without user interaction). Then, I think, I'll

Page 3 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

have only one copy of the data on the go, straight into a sorted
format.
Does this seem like the right strategy?
Thanks
Dave Higgins

Page 4 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

