
Subject: Re: Ruby range operators? Re: IDL 8.0 compile_opt changes
Posted by Kenneth P. Bowman on Fri, 08 Jan 2010 22:08:31 GMT
View Forum Message <> Reply to Message

The discussion of negative indices has my head hurting, but I admit that
I have always wanted to be able to subscript like this

   a = b[3:*-1]

instead of

   n = N_ELEMENTS(b)
   a = b[3:n-2]

Cheers, Ken

Subject: Re: Ruby range operators? Re: IDL 8.0 compile_opt changes
Posted by Maarten[1] on Mon, 11 Jan 2010 08:41:10 GMT
View Forum Message <> Reply to Message

On Jan 8, 10:16 pm, Paul van Delst <paul.vande...@noaa.gov> wrote:
>  Maarten wrote:
>>  On Jan 7, 6:56 pm, mgalloy <mgal...@gmail.com> wrote:
>>>  I think we are agreeing here, but just to be sure: Python and IDL would
>>>  be specifying the endpoints of the range in the same way, it's just that
>>>  Python always includes the start index and excludes the end index (even
>>>  if not using negative indices):
> 
>>>> >> a = [1, 2, 3, 4]
>>>> >> a[1:3]
>>>       [2, 3]
> 
>>  Yes. Although this is a fundamental difference that is the result of a
>>  choice both language developers made. Thinking about it a bit longer,
>>  I don't think the two can be made to act the same: IDL always includes
>>  the end index of the range, while Python always excludes it. Some
>>  emphasis on this in the documentation may be needed, as Python
>>  probably is the most widespread programming language that offers the
>>  facility of negative indices.
> 
>  Well, since they're mucking about with operators in general, maybe ITTVIS could go the
>  ruby route and introduce the ".." and "..." range operators. The former is an inclusive
>  range (same functionality as ":") and the latter is a range that excludes the higher
>  value. So,
> 
>  $ irb
>  irb(main)> a = [1,2,3,4,5,6]
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>  => [1, 2, 3, 4, 5, 6]
> 
>  irb(main)> a[1..3]
>  => [2, 3, 4]
> 
>  irb(main)> a[1...3]
>  => [2, 3]
> 
>  irb(main)> a[1..-1]
>  => [2, 3, 4, 5, 6]
> 
>  irb(main)> a[1...-1]
>  => [2, 3, 4, 5]

That is one option. Of course, python doesn't stop at a[1:-1], it can
also do a[-1:1:-1], resulting in [6, 5, 4, 3] (with a as above). That
is, it includes a stride (including negative stride) in its array
indexing.

>  BTW, if IDL 8.0 will allow operator overloading, will it also allow for operator
>  definition? The overloading should allow for ".." having the same result as ":", but will
>  we be able to define functions/procedures that can be overloaded with "..." ?

Are you sure you want to open that can of worms? Adding this once will
preclude _any_ future syntax changes or additions, as _someone_ will
have implemented a conflicting operator.

Maarten

Subject: Re: Ruby range operators? Re: IDL 8.0 compile_opt changes
Posted by Maarten[1] on Mon, 11 Jan 2010 16:20:30 GMT
View Forum Message <> Reply to Message

On Jan 11, 9:41 am, Maarten <maarten.sn...@knmi.nl> wrote:
>  On Jan 8, 10:16 pm, Paul van Delst <paul.vande...@noaa.gov> wrote:
> 
> 
> 
>>  Maarten wrote:
>>>  On Jan 7, 6:56 pm, mgalloy <mgal...@gmail.com> wrote:
>>>>  I think we are agreeing here, but just to be sure: Python and IDL would
>>>>  be specifying the endpoints of the range in the same way, it's just that
>>>>  Python always includes the start index and excludes the end index (even
>>>>  if not using negative indices):
> 
>>>>   >>> a = [1, 2, 3, 4]
>>>>   >>> a[1:3]
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>>>>       [2, 3]
> 
>>>  Yes. Although this is a fundamental difference that is the result of a
>>>  choice both language developers made. Thinking about it a bit longer,
>>>  I don't think the two can be made to act the same: IDL always includes
>>>  the end index of the range, while Python always excludes it. Some
>>>  emphasis on this in the documentation may be needed, as Python
>>>  probably is the most widespread programming language that offers the
>>>  facility of negative indices.
> 
>>  Well, since they're mucking about with operators in general, maybe ITTVIS could go the
>>  ruby route and introduce the ".." and "..." range operators. The former is an inclusive
>>  range (same functionality as ":") and the latter is a range that excludes the higher
>>  value. So,
> 
>>  $ irb
>>  irb(main)> a = [1,2,3,4,5,6]
>>  => [1, 2, 3, 4, 5, 6]
> 
>>  irb(main)> a[1..3]
>>  => [2, 3, 4]
> 
>>  irb(main)> a[1...3]
>>  => [2, 3]
> 
>>  irb(main)> a[1..-1]
>>  => [2, 3, 4, 5, 6]
> 
>>  irb(main)> a[1...-1]
>>  => [2, 3, 4, 5]
> 
>  That is one option. Of course, python doesn't stop at a[1:-1], it can
>  also do a[-1:1:-1], resulting in [6, 5, 4, 3] (with a as above). That
>  is, it includes a stride (including negative stride) in its array
>  indexing.

Oh, to add to the fun: python uses ... for a different operation:
specifying all elements for all non-explicitly mentioned dimensions.
This allows you to write code the can handle an arbitrary number of
dimensions of your array.

import numpy as np
a = np.arange(0,3*4*5*6,1)
a = a.reshape((3,4,5,6))
b = a[...,2,:]
c = a[1,...,0]
print(c.shape)
(4, 5)
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print(c)
array([[120, 126, 132, 138, 144],
       [150, 156, 162, 168, 174],
       [180, 186, 192, 198, 204],
       [210, 216, 222, 228, 234]])
print(b.shape)
(3, 4, 6)

(won't print here, too large).

Best,

Maarten - Each language will reinvent similar things in different ways
- Sneep

Subject: Re: Ruby range operators? Re: IDL 8.0 compile_opt changes
Posted by Paul Van Delst[1] on Mon, 11 Jan 2010 16:33:13 GMT
View Forum Message <> Reply to Message

Maarten wrote:
>  On Jan 8, 10:16 pm, Paul van Delst <paul.vande...@noaa.gov> wrote:
>>  BTW, if IDL 8.0 will allow operator overloading, will it also allow for operator
>>  definition? The overloading should allow for ".." having the same result as ":", but will
>>  we be able to define functions/procedures that can be overloaded with "..." ?
>  
>  Are you sure you want to open that can of worms? Adding this once will
>  preclude _any_ future syntax changes or additions, as _someone_ will
>  have implemented a conflicting operator.

Well, that can of worms has been opened many times previously in other languages (even
Fortran since 1990!). I would think the rules for compiler/interpreter writers are well
established.

cheers,

paulv

Subject: Re: Ruby range operators? Re: IDL 8.0 compile_opt changes
Posted by R.Bauer on Wed, 13 Jan 2010 09:41:25 GMT
View Forum Message <> Reply to Message

Maarten schrieb:

>  Are you sure you want to open that can of worms? Adding this once will
>  preclude _any_ future syntax changes or additions, as _someone_ will
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>  have implemented a conflicting operator.
>  
>  Maarten

Hi

as I have written before, I would wish a complete redesign of idl
features without any compatibility flag.

You can follow this process currently by python 2 to python 3.

At some point it makes more sense to refactor your application and
remove all of the deprecated functions instead of adding more and more
compatibility crap.

cheers
Reimar
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