
Subject: Re: Ruby range operators? Re: IDL 8.0 compile_opt changes
Posted by Kenneth P. Bowman on Fri, 08 Jan 2010 22:08:31 GMT
View Forum Message <> Reply to Message

The discussion of negative indices has my head hurting, but I admit that
I have always wanted to be able to subscript like this

 a = b[3:*-1]

instead of

 n = N_ELEMENTS(b)
 a = b[3:n-2]

Cheers, Ken

Subject: Re: Ruby range operators? Re: IDL 8.0 compile_opt changes
Posted by Maarten[1] on Mon, 11 Jan 2010 08:41:10 GMT
View Forum Message <> Reply to Message

On Jan 8, 10:16 pm, Paul van Delst <paul.vande...@noaa.gov> wrote:
> Maarten wrote:
>> On Jan 7, 6:56 pm, mgalloy <mgal...@gmail.com> wrote:
>>> I think we are agreeing here, but just to be sure: Python and IDL would
>>> be specifying the endpoints of the range in the same way, it's just that
>>> Python always includes the start index and excludes the end index (even
>>> if not using negative indices):
>
>>>> >> a = [1, 2, 3, 4]
>>>> >> a[1:3]
>>> [2, 3]
>
>> Yes. Although this is a fundamental difference that is the result of a
>> choice both language developers made. Thinking about it a bit longer,
>> I don't think the two can be made to act the same: IDL always includes
>> the end index of the range, while Python always excludes it. Some
>> emphasis on this in the documentation may be needed, as Python
>> probably is the most widespread programming language that offers the
>> facility of negative indices.
>
> Well, since they're mucking about with operators in general, maybe ITTVIS could go the
> ruby route and introduce the ".." and "..." range operators. The former is an inclusive
> range (same functionality as ":") and the latter is a range that excludes the higher
> value. So,
>
> $ irb
> irb(main)> a = [1,2,3,4,5,6]

Page 1 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3522
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29977&goto=69428#msg_69428
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=69428
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5593
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29977&goto=69295#msg_69295
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=69295
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> => [1, 2, 3, 4, 5, 6]
>
> irb(main)> a[1..3]
> => [2, 3, 4]
>
> irb(main)> a[1...3]
> => [2, 3]
>
> irb(main)> a[1..-1]
> => [2, 3, 4, 5, 6]
>
> irb(main)> a[1...-1]
> => [2, 3, 4, 5]

That is one option. Of course, python doesn't stop at a[1:-1], it can
also do a[-1:1:-1], resulting in [6, 5, 4, 3] (with a as above). That
is, it includes a stride (including negative stride) in its array
indexing.

> BTW, if IDL 8.0 will allow operator overloading, will it also allow for operator
> definition? The overloading should allow for ".." having the same result as ":", but will
> we be able to define functions/procedures that can be overloaded with "..." ?

Are you sure you want to open that can of worms? Adding this once will
preclude _any_ future syntax changes or additions, as _someone_ will
have implemented a conflicting operator.

Maarten

Subject: Re: Ruby range operators? Re: IDL 8.0 compile_opt changes
Posted by Maarten[1] on Mon, 11 Jan 2010 16:20:30 GMT
View Forum Message <> Reply to Message

On Jan 11, 9:41 am, Maarten <maarten.sn...@knmi.nl> wrote:
> On Jan 8, 10:16 pm, Paul van Delst <paul.vande...@noaa.gov> wrote:
>
>
>
>> Maarten wrote:
>>> On Jan 7, 6:56 pm, mgalloy <mgal...@gmail.com> wrote:
>>>> I think we are agreeing here, but just to be sure: Python and IDL would
>>>> be specifying the endpoints of the range in the same way, it's just that
>>>> Python always includes the start index and excludes the end index (even
>>>> if not using negative indices):
>
>>>> >>> a = [1, 2, 3, 4]
>>>> >>> a[1:3]

Page 2 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5593
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29977&goto=69292#msg_69292
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=69292
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>> [2, 3]
>
>>> Yes. Although this is a fundamental difference that is the result of a
>>> choice both language developers made. Thinking about it a bit longer,
>>> I don't think the two can be made to act the same: IDL always includes
>>> the end index of the range, while Python always excludes it. Some
>>> emphasis on this in the documentation may be needed, as Python
>>> probably is the most widespread programming language that offers the
>>> facility of negative indices.
>
>> Well, since they're mucking about with operators in general, maybe ITTVIS could go the
>> ruby route and introduce the ".." and "..." range operators. The former is an inclusive
>> range (same functionality as ":") and the latter is a range that excludes the higher
>> value. So,
>
>> $ irb
>> irb(main)> a = [1,2,3,4,5,6]
>> => [1, 2, 3, 4, 5, 6]
>
>> irb(main)> a[1..3]
>> => [2, 3, 4]
>
>> irb(main)> a[1...3]
>> => [2, 3]
>
>> irb(main)> a[1..-1]
>> => [2, 3, 4, 5, 6]
>
>> irb(main)> a[1...-1]
>> => [2, 3, 4, 5]
>
> That is one option. Of course, python doesn't stop at a[1:-1], it can
> also do a[-1:1:-1], resulting in [6, 5, 4, 3] (with a as above). That
> is, it includes a stride (including negative stride) in its array
> indexing.

Oh, to add to the fun: python uses ... for a different operation:
specifying all elements for all non-explicitly mentioned dimensions.
This allows you to write code the can handle an arbitrary number of
dimensions of your array.

import numpy as np
a = np.arange(0,3*4*5*6,1)
a = a.reshape((3,4,5,6))
b = a[...,2,:]
c = a[1,...,0]
print(c.shape)
(4, 5)

Page 3 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

print(c)
array([[120, 126, 132, 138, 144],
 [150, 156, 162, 168, 174],
 [180, 186, 192, 198, 204],
 [210, 216, 222, 228, 234]])
print(b.shape)
(3, 4, 6)

(won't print here, too large).

Best,

Maarten - Each language will reinvent similar things in different ways
- Sneep

Subject: Re: Ruby range operators? Re: IDL 8.0 compile_opt changes
Posted by Paul Van Delst[1] on Mon, 11 Jan 2010 16:33:13 GMT
View Forum Message <> Reply to Message

Maarten wrote:
> On Jan 8, 10:16 pm, Paul van Delst <paul.vande...@noaa.gov> wrote:
>> BTW, if IDL 8.0 will allow operator overloading, will it also allow for operator
>> definition? The overloading should allow for ".." having the same result as ":", but will
>> we be able to define functions/procedures that can be overloaded with "..." ?
>
> Are you sure you want to open that can of worms? Adding this once will
> preclude _any_ future syntax changes or additions, as _someone_ will
> have implemented a conflicting operator.

Well, that can of worms has been opened many times previously in other languages (even
Fortran since 1990!). I would think the rules for compiler/interpreter writers are well
established.

cheers,

paulv

Subject: Re: Ruby range operators? Re: IDL 8.0 compile_opt changes
Posted by R.Bauer on Wed, 13 Jan 2010 09:41:25 GMT
View Forum Message <> Reply to Message

Maarten schrieb:

> Are you sure you want to open that can of worms? Adding this once will
> preclude _any_ future syntax changes or additions, as _someone_ will

Page 4 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29977&goto=69291#msg_69291
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=69291
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2825
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=29977&goto=69408#msg_69408
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=69408
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> have implemented a conflicting operator.
>
> Maarten

Hi

as I have written before, I would wish a complete redesign of idl
features without any compatibility flag.

You can follow this process currently by python 2 to python 3.

At some point it makes more sense to refactor your application and
remove all of the deprecated functions instead of adding more and more
compatibility crap.

cheers
Reimar

Page 5 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

