Subject: Re: performing multiple histograms without loops
Posted by MC on Tue, 02 Feb 2010 09:48:18 GMT

View Forum Message <> Reply to Message

On Feb 2, 6:25 pm, Jeremy Bailin <astroco...@gmail.com> wrote:

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVYVYVYVYVYV

| thought it would be worth expanding on the technique that | used in
response

to Ed's question, because it's a very useful one. The basic idea is
this:

suppose | want to use HISTOGRAM not on one a single set of N data
points, but

independently on multiple (say M) sets each of N data points. The
simple solution

is to use a for loop, but if M is large the IDL loop penalty soon
becomes a problem. Is it possible to avoid a loop?

The answer is yes, and the trick is to modify the data in each of the

M data

sets so that they don't overlap, and then use a single HISTOGRAM on
all

of them at once.

For a concrete example, let's say that we have 5 data sets, each with
10

data points that are small integers (for convenience - if your data
doesn't

look like this but contains individual values, then you can use a
combination

of UNIQ and VALUE_LOCATE to turn it into this form, or just
VALUE_LOCATE

if you need to bin different values together).

setl =[4,1,2,3,1,3,2,2,1,1]
set2 =[2,3,1,3,4,2,2,0,0,4]
set3 =[2,2,0,3,4,1,2,3,1,1]
set4 =[1,4,2,4,1,4,2,4,3,3]
set5 =[0,4,1,2,1,4,2,2,3,4]
set6 = [3,4,1,0,0,1,1,0,2,1]
datasets = [[setl],[set2],[set3],[setd],[set5],[setb]]

datasets is now a 10x6 array with all of the data:
IDL> print, datasets

1 1

Page 1 of 14 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1696
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30085&goto=69695#msg_69695
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=69695
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVYVYVYVYVVYVYVYV

3 3

0 4 1 2 1 4 2 2
3 4

3 4 1 0 0 1 1 0
2 1

If we want to print out the histogram of each one, the traditional way
would be
to put a HISTOGRAM command inside a for loop:

datasetsize=size(datasets,/dimen)

ndatasets=datasetsize[1]

minval=min(datasets)

maxval=max(datasets)

for i=0,ndatasets-1 do print, histogram(datasets[*,i], min=minval,
max=maxval)

WrRORNO
AN WE D
P WNWWww
PR NNNN
PWARNPR

But we can do it within a single histogram by adding 5 to all values
in set2

so that it runs from 5 to 9, 10 to all the values in set3 so that it
runs

from 10 to 14, etc.

datasets_new = datasets - minval

dataspan = maxval-minval+1

datasets_new += rebin(transpose(lindgen(ndatasets)*dataspan), size
(datasets,/dimen))

IDL> print, datasets_new

4 1 2 3 1
3

2 2 1 1

7 8 6 8 9
7

7 5 5 9

12 12 10 13 14
11

12 13 11 11

16 19 17 19 16
19

Page 2 of 14 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVYVYVYVYVVYVYVYV

17 19 18 18

20 24 21 22 21
24

22 22 23 24

28 29 26 25 25
26

26 25 27 26

Now, if we perform a histogram of datasets_new, the 1s from setl don't
interfere

with the 1s from set2 (which are now 6s), or the 1s from set3 (which
are

now 11s), etc. A single histogram will effectively perform a histogram

of each set independently:

h_new = histogram(datasets_new, min=0, max=ndatasets*dataspan-1,
bin=1)

But the 6 histograms are all jammed up against each other inside h!
How
do we get them out?

h_new = reform(h_new, dataspan, ndatasets)

IDL> print, h

WrRORNO
AN WE D
B W WwWww
PR NMNNN
P WARNR

We can compare to the loop version and see that it does indeed give
the
right answer.

"Alright," you say, "but the main reason | use HISTOGRAM is because of
REVERSE_INDICES. How do | get those out?"

If you want the reverse indices for data set j, they can be easily
extracted from the reverse indices of the full histogram. If we
create the histogram as:

h_new = reform(histogram(datasets_new, min=0,
max=ndatasets*dataspan-1, bin=1, $
reverse_indices=ri), dataspan, ndatasets)

then the i-vector (in JD's terminology) for data set j runs from

Page 3 of 14 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVYVYVYVYVVYVYVYV

rifj*dataspan] to ri[(j+1)*dataspan-1]. These can be used directly
to index the o-vector. To get the original element in data set |
from the value in the o-vector, subtract j*datasetsize[0]. For
example,

where are the 3's in datasets[*,1]?

IDL> print, ri[ri[1*dataspan+3]:ri[l*dataspan+3+1]-1] - 1*datasetsize

[0]
1 3

A more interesting question is "where are the 3's in all of the
datasets"?

This can in fact be done without loops! First, let's look at the loop
version:

for i=0,ndatasets-1 do begin

h = histogram(datasets[*,i], min=minval, max=maxval,
reverse_indices=ril)

if h[3] gt O then print, ril[ril[3]:ril[3+1]-1]
endfor

O 0000wk Ww
O N waou

Using a combination of chunk indexing and "chunk index generation”
(i.e. the solution to Wox's problem of a few weeks ago):

n = h_new][lindgen(ndatasets)*dataspan+3]

h2=histogram(total(n>0,/CUMULATIVE,/int)-1,/

BINSIZE,MIN=0,REVERSE_INDICES=ri2)

nh=n_elements(h2)

chunkind=ri2[0:nh-1]-ri2[0]

I1=((I=lindgen(((nm=ndatasets>(max(n)))),nm) mod nm))[where((l It $
(rebin(transpose(n),nm,nm,/sample))))]

where3 = [[chunkind],[ri[ri[chunkind*dataspan+3]+I1] mod datasetsize

[o11

where3 is now a N3 x 2 array containing the data set and index within
that

data set of every value of 3 (of which there are N3=10 in this
example):

IDL> print, transpose(where3)
0 3
0 5

Page 4 of 14 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVVYVYVYVYVYVYV
G WWNDNREBEF
O WOWooO~NWWEPE

> oo
> One caveat with this method is that it can be quite wasteful of

> memory.

> The full histogram contains dataspan x ndatasets entries, but really

> only

> ndatasets”2 of them can be non-zero. If dataspan is much larger than
> ndatasets,

> as might be the case if the values from each data set don't appear in
> the

> other data sets, then you might run into memory problems pretty

> quickly.

> You can try to work around this a bit by using UNIQ to compress the
> values

> that get fed into the histogram, but it makes it much more complicated
> to extract

> the original information back out.

>

> -Jeremy.

Sorry but it not at all clear to me that this is a good idea, you have

to search all the datasets to make sure you get no overlaps and
determine the offsets (which have to be added) and may also run into
integer problems for large integer data sets. Comments?

Cheers

Subject: Re: performing multiple histograms without loops
Posted by Wout De Nolf on Tue, 02 Feb 2010 10:11:48 GMT

View Forum Message <> Reply to Message

On Mon, 1 Feb 2010 21:25:32 -0800 (PST), Jeremy Bailin
<astroconst@gmail.com> wrote:

> | thought it would be worth expanding on the technique that | used in
> response
> to Ed's question, because it's a very useful one.

Nothing like a nice vectorized loop in the morning!

Page 5 of 14 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6623
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30085&goto=69693#msg_69693
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=69693
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Did you compare the speed of your approach to the loop-approach? For
reasonably sized datasets | expect the loop to be faster. This was

also true for the chunk index generation you mentioned.

Thanks for sharing,

Wox

Subject: Re: performing multiple histograms without loops
Posted by Jeremy Bailin on Wed, 03 Feb 2010 13:43:13 GMT

View Forum Message <> Reply to Message

On Feb 2, 4:48 am, MC <morefl...@gmail.com> wrote:
> On Feb 2, 6:25 pm, Jeremy Bailin <astroco...@gmail.com> wrote:

V

>> | thought it would be worth expanding on the technique that | used in
>> response

>> to Ed's question, because it's a very useful one. The basic idea is

>> this:

>> suppose | want to use HISTOGRAM not on one a single set of N data
>> points, but

>> independently on multiple (say M) sets each of N data points. The

>> simple solution

>> s to use a for loop, but if M is large the IDL loop penalty soon

>> pecomes a problem. Is it possible to avoid a loop?

>> The answer is yes, and the trick is to modify the data in each of the
>> M data

>> sets so that they don't overlap, and then use a single HISTOGRAM on
>> all

>> of them at once.

>> For a concrete example, let's say that we have 5 data sets, each with
>> 10

>> data points that are small integers (for convenience - if your data

>> doesn't

>> |ook like this but contains individual values, then you can use a

>> combination

>> of UNIQ and VALUE_LOCATE to turn it into this form, or just

>> VALUE_LOCATE

>> f you need to bin different values together).

Page 6 of 14 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30085&goto=69685#msg_69685
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=69685
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>>
>>
>>
>>
>>
>>

>>

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

>>
>>
>>

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

>>
>>
>>
>>
>>

>>

setl =[4,1,2,3,1,3,2,2,1,1]
set2 =[2,3,1,3,4,2,2,0,0,4]
set3 =[2,2,0,3,4,1,2,3,1,1]
set4 =[1,4,2,4,1,4,2,4,3,3]
set5 =[0,4,1,2,1,4,2,2,3,4]
set6 = [3,4,1,0,0,1,1,0,2,1]
datasets = [[setl],[set2],[set3],[setd],[set5],[setb]]

datasets is now a 10x6 array with all of the data:

IDL> print, datasets

1 1

2 3 1 3 4 2 2 0
0 4

2 2 0 3 4 1 2 3
1 1

1 4 2 4 1 4 2 4
3 3

0 4 1 2 1 4 2 2
3 4

3 4 1 0 0 1 1 0
2 1

If we want to print out the histogram of each one, the traditional way
would be
to put a HISTOGRAM command inside a for loop:

datasetsize=size(datasets,/dimen)

ndatasets=datasetsize[1]

minval=min(datasets)

maxval=max(datasets)

for i=0,ndatasets-1 do print, histogram(datasets[*,i], min=minval,
max=maxval)

WFRLROEFLNO
ANDNWERE AN
P WNWWW
RPRPNNNDN
P WARNER

But we can do it within a single histogram by adding 5 to all values
in set2

so that it runs from 5 to 9, 10 to all the values in set3 so that it
runs

from 10 to 14, etc.

datasets_new = datasets - minval

Page 7 of 14 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> dataspan = maxval-minval+1
>> datasets_new += rebin(transpose(lindgen(ndatasets)*dataspan), size
>> (datasets,/dimen))

>
>> |DL> print, datasets_new

>> 4 1 2 3 1
>> 3

>> 2 2 1 1

>> 7 8 6 8 9
>> 7

>> 7 5 5 9

>> 12 12 10 13 14
>> 11

>> 12 13 11 11

>> 16 19 17 19 16
>> 19

>> 17 19 18 18

>> 20 24 21 22 21
>> 24

>> 22 22 23 24

>> 28 29 26 25 25
>> 26

>> 26 25 27 26

>

>> Now, if we perform a histogram of datasets_new, the 1s from setl don't
>> interfere

>> with the 1s from set2 (which are now 6s), or the 1s from set3 (which

>> are

>> now 11s), etc. A single histogram will effectively perform a histogram
>> of each set independently:

>> h_new = histogram(datasets_new, min=0, max=ndatasets*dataspan-1,
>> pin=1)

>> But the 6 histograms are all jammed up against each other inside h!
>> How
>> do we get them out?

>> h_new = reform(h_new, dataspan, ndatasets)

>> |DL> print, h
>>
>>
>>
>>
>>
>>

WFRORFRLNO
ANDNWE AN
P WNWWW
PR NNNDN
P WARNR

Page 8 of 14 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> \We can compare to the loop version and see that it does indeed give
>> the
>> right answer.

>> "Alright," you say, "but the main reason | use HISTOGRAM is because of
>> REVERSE_INDICES. How do | get those out?"

>> |f you want the reverse indices for data set |, they can be easily
>> extracted from the reverse indices of the full histogram. If we
>> create the histogram as:

>> h_new = reform(histogram(datasets_new, min=0,
>> max=ndatasets*dataspan-1, bin=1, $
>> reverse_indices=ri), dataspan, ndatasets)

>> then the i-vector (in JD's terminology) for data set j runs from

>> ri[j*dataspan] to ri[(j+1)*dataspan-1]. These can be used directly
>> to index the o-vector. To get the original element in data set |
>> from the value in the o-vector, subtract j*datasetsize[0]. For

>> example,

>> where are the 3's in datasets[*,1]?

>
>> |DL> print, ri[ri[1*dataspan+3]:rij1*dataspan+3+1]-1] - 1*datasetsize
>> [0]

>> 1 3

>

>> A more interesting question is "where are the 3's in all of the

>> datasets"?

>> This can in fact be done without loops! First, let's look at the loop
>> version:

>> for i=0,ndatasets-1 do begin

>> h = histogram(datasets[*,i], min=minval, max=maxval,
>> reverse_indices=ril)

>> jf h[3] gt O then print, ril[ril[3]:ril[3+1]-1]

>> endfor
>>

>>

>>

>>

>>

>>

OO WEr w
©O© Nwou

>> Using a combination of chunk indexing and "chunk index generation"
>> (i.e. the solution to Wox's problem of a few weeks ago):

>> n = h_new[lindgen(ndatasets)*dataspan+3]
>> h2=histogram(total(n>0,/CUMULATIVE,/int)-1,/

Page 9 of 14 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>>
>>
>>
>>
>>
>>
>

>>
>>
>>
>>
>

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>

>>
>

>
>
>
>

BINSIZE,MIN=0,REVERSE_INDICES=ri2)

nh=n_elements(h2)

chunkind=ri2[0:nh-1]-ri2[0]

I11=((I=lindgen(((nm=ndatasets>(max(n)))),nm) mod nm))[where((I It $
(rebin(transpose(n),nm,nm,/sample))))]

where3 = [[chunkind],[ri[ri[chunkind*dataspan+3]+I1] mod datasetsize

[o11]

where3 is now a N3 x 2 array containing the data set and index within
that

data set of every value of 3 (of which there are N3=10 in this
example):

IDL> print, transpose(where3)

OOPrWWONNRELPEFLOO
OV OWoO~NWWEF Olw

One caveat with this method is that it can be quite wasteful of
memory.

The full histogram contains dataspan x ndatasets entries, but really
only

ndatasets”2 of them can be non-zero. If dataspan is much larger than
ndatasets,

as might be the case if the values from each data set don't appear in
the

other data sets, then you might run into memory problems pretty
quickly.

You can try to work around this a bit by using UNIQ to compress the
values

that get fed into the histogram, but it makes it much more complicated
to extract

the original information back out.

-Jeremy.

Sorry but it not at all clear to me that this is a good idea, you have

to search all the datasets to make sure you get no overlaps and
determine the offsets (which have to be added) and may also run into
integer problems for large integer data sets. Comments?

Page 10 of 14 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> Cheers

I'm not sure what you mean about the first point - do you mean that
you think the time it takes to calculate the dataspan and offsets will
offset the loop saving? I've run some timing tests in response to
Wox's question that show that it wins under lots of reasonable
conditions.

It's definitely true that you'll need to watch out for overflowing
your variable type - I've switched everything to ulong64s, which
should be sufficient for most cases, and it doesn't slow things down.

-Jeremy.

Subject: Re: performing multiple histograms without loops
Posted by Jeremy Bailin on Wed, 03 Feb 2010 14:12:47 GMT

View Forum Message <> Reply to Message

> Did you compare the speed of your approach to the loop-approach? For
> reasonably sized datasets | expect the loop to be faster. This was
> also true for the chunk index generation you mentioned.

Here's some test code (just does the histogram, since the
reverse_indices come out in different forms and it will depend what
exactly you want to do with them). The scaling depends on ndatasets,
datalen, and datarange. | had Ed's problem in mind, where he said each
data set corresponded to a pixel in a large image, so there could be
millions of data sets, and datalen seemed low since he was willing to
append them all by hand. First, the punch line:

ndatasets datalen datarange Loop-speed Vectorized-speed

10 10 4 5.8e-5 3.0e-5
10000 10 4 0.014 0.0031
10000000 10 4 12 3.5

10 10000 4 0.0010 0.0029
10 10000000 4 0.81 2.8
1000 1000 4 0.0044 0.031

10 10 100 5.4e-5 4.2e-5
10000 10 100 0.014 0.0086
10000000 10 100 115 9.1

10 10000 100 0.0011 0.0030
10 10000000 100 0.80 2.8
10000 10 10000 0.39 0.40

10 10000 10000 0.0016 0.0035

Page 11 of 14 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30085&goto=69683#msg_69683
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=69683
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

So, if datarange is low and ndatasets is larger than datalen, the
vectorized version wins. If datalen is larger than ndatasets, the loop
wins no matter what. If datarange is large, the loop usually wins or
comes close (but note that datarange never needs to be larger than the
product of ndatasets and datalen - if it is, use unig+value_locate to
remap the values into a smaller range). The best approach definitely
depends on your problem!

Here's the code:

ndatasets=10I
datalen=10I
datarange=4l

datasets = round(randomu(seed,datalen,ndatasets)*datarange)
; needed for both approaches, so leave it out of timing
minval=min(datasets, max=maxval)

; loop version

tO=systime(/sec)

for i=0l,ndatasets-1 do h=histogram(datasets[*,i], min=minval,
max=maxval)

t1=systime(/sec)

print, '‘Loop approach: ',t1-t0

: vectorized version
tO=systime(/sec)
dataspan=maxval-minval
datasets -= minval
h = reform(histogram(datasets + rebin(transpose(ul64indgen(ndatasets)
*dataspan), $
size(datasets,/dimen)), min=0, max=ulong64(ndatasets)*dataspan-1),
dataspan, $
ndatasets)
tl=systime(/sec)
print, 'Vectorized approach: ',t1-t0

-Jeremy.

Subject: Re: performing multiple histograms without loops
Posted by JDS on Wed, 03 Feb 2010 21:47:48 GMT

View Forum Message <> Reply to Message

On Feb 2, 12:25 am, Jeremy Bailin <astroco...@gmail.com> wrote:
> | thought it would be worth expanding on the technique that | used in

Page 12 of 14 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6762
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30085&goto=69679#msg_69679
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=69679
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

response
to Ed's question, because it's a very useful one. The basic idea is
this:

suppose | want to use HISTOGRAM not on one a single set of N data
points, but

independently on multiple (say M) sets each of N data points. The
simple solution

is to use a for loop, but if M is large the IDL loop penalty soon
becomes a problem. Is it possible to avoid a loop?

The answer is yes, and the trick is to modify the data in each of the

M data

sets so that they don't overlap, and then use a single HISTOGRAM on
all

of them at once.

VVVVVVVVYVVYVYVYVYVYV

It's a good method... in fact, you've essentially rediscovered the
algorithm employed by HIST_ND (which itself elaborated on IDL's own
HIST_2D). The M sets of N data points constitute a second dimension
(which don't really need to correspond to physical dimensions of any
sort... they could just be "M different sets numbered 0..M-1"). If

you follow through the dimensional analogy, you can also more easily
extract the "sub-histogram" by dumping the raw output into an
appropriately dimensioned array.

JD

Subject: Re: performing multiple histograms without loops
Posted by rogass on Thu, 04 Feb 2010 12:05:35 GMT

View Forum Message <> Reply to Message

Hi,

maybe you can speed up your vectorized approach by avoding the
transpose step and by using the SAMPLE keyword within rebin to:
rebin(ul64lindgen(1,ndatasets)*dataspan,size.... ,/SAMPLE) For large
vectors (replicate({ : })).(0) may work sometimes faster.

Greets

CR

Subject: Re: performing multiple histograms without loops
Posted by Jeremy Bailin on Thu, 04 Feb 2010 19:21:59 GMT

View Forum Message <> Reply to Message

Page 13 of 14 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6429
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30085&goto=69616#msg_69616
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=69616
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30085&goto=69610#msg_69610
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=69610
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

On Feb 4, 7:05 am, chris <rog...@googlemail.com> wrote:

> Hi,

> maybe you can speed up your vectorized approach by avoding the

> transpose step and by using the SAMPLE keyword within rebin to:

> rebin(ul64lindgen(1,ndatasets)*dataspan,size.... ,/SAMPLE) For large
> vectors (replicate({ : })).(0) may work sometimes faster.

>

> Greets

>

> CR

Indeed! Changing the rebin makes a huge difference... for example,
with ndatasets=10000000, datalen=10, datarange=100, | get a factor of
3 improvement.

10000000 10 100 115 9.1

turns into

10000000 10 100 11.6 3.2

| didn't try the full grid of parameters, but if that's consistent

across the board, that brings the vectorized approach up to at least
as good as the loop approach over almost the entire grid, and quite a

bit better over most of it.

-Jeremy.

Page 14 of 14 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

