
Subject: performing multiple histograms without loops
Posted by Jeremy Bailin on Tue, 02 Feb 2010 05:25:32 GMT
View Forum Message <> Reply to Message

I thought it would be worth expanding on the technique that I used in
response
to Ed's question, because it's a very useful one. The basic idea is
this:
suppose I want to use HISTOGRAM not on one a single set of N data
points, but
independently on multiple (say M) sets each of N data points. The
simple solution
is to use a for loop, but if M is large the IDL loop penalty soon
becomes a problem. Is it possible to avoid a loop?

The answer is yes, and the trick is to modify the data in each of the
M data
sets so that they don't overlap, and then use a single HISTOGRAM on
all
of them at once.

For a concrete example, let's say that we have 5 data sets, each with
10
data points that are small integers (for convenience - if your data
doesn't
look like this but contains individual values, then you can use a
combination
of UNIQ and VALUE_LOCATE to turn it into this form, or just
VALUE_LOCATE
if you need to bin different values together).

set1 = [4,1,2,3,1,3,2,2,1,1]
set2 = [2,3,1,3,4,2,2,0,0,4]
set3 = [2,2,0,3,4,1,2,3,1,1]
set4 = [1,4,2,4,1,4,2,4,3,3]
set5 = [0,4,1,2,1,4,2,2,3,4]
set6 = [3,4,1,0,0,1,1,0,2,1]
datasets = [[set1],[set2],[set3],[set4],[set5],[set6]]

datasets is now a 10x6 array with all of the data:

IDL> print, datasets
 4 1 2 3 1 3 2 2
1 1
 2 3 1 3 4 2 2 0
0 4
 2 2 0 3 4 1 2 3
1 1

Page 1 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30114&goto=69696#msg_69696
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=69696
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 1 4 2 4 1 4 2 4
3 3
 0 4 1 2 1 4 2 2
3 4
 3 4 1 0 0 1 1 0
2 1

If we want to print out the histogram of each one, the traditional way
would be
to put a HISTOGRAM command inside a for loop:

datasetsize=size(datasets,/dimen)
ndatasets=datasetsize[1]
minval=min(datasets)
maxval=max(datasets)
for i=0,ndatasets-1 do print, histogram(datasets[*,i], min=minval,
max=maxval)
 0 4 3 2 1
 2 1 3 2 2
 1 3 3 2 1
 0 2 2 2 4
 1 2 3 1 3
 3 4 1 1 1

But we can do it within a single histogram by adding 5 to all values
in set2
so that it runs from 5 to 9, 10 to all the values in set3 so that it
runs
from 10 to 14, etc.

datasets_new = datasets - minval
dataspan = maxval-minval+1
datasets_new += rebin(transpose(lindgen(ndatasets)*dataspan), size
(datasets,/dimen))

IDL> print, datasets_new
 4 1 2 3 1
3
 2 2 1 1
 7 8 6 8 9
7
 7 5 5 9
 12 12 10 13 14
11
 12 13 11 11
 16 19 17 19 16
19

Page 2 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 17 19 18 18
 20 24 21 22 21
24
 22 22 23 24
 28 29 26 25 25
26
 26 25 27 26

Now, if we perform a histogram of datasets_new, the 1s from set1 don't
interfere
with the 1s from set2 (which are now 6s), or the 1s from set3 (which
are
now 11s), etc. A single histogram will effectively perform a histogram
of each set independently:

h_new = histogram(datasets_new, min=0, max=ndatasets*dataspan-1,
bin=1)

But the 6 histograms are all jammed up against each other inside h!
How
do we get them out?

h_new = reform(h_new, dataspan, ndatasets)

IDL> print, h
 0 4 3 2 1
 2 1 3 2 2
 1 3 3 2 1
 0 2 2 2 4
 1 2 3 1 3
 3 4 1 1 1

We can compare to the loop version and see that it does indeed give
the
right answer.

"Alright," you say, "but the main reason I use HISTOGRAM is because of
REVERSE_INDICES. How do I get those out?"

If you want the reverse indices for data set j, they can be easily
extracted from the reverse indices of the full histogram. If we
create the histogram as:

h_new = reform(histogram(datasets_new, min=0,
max=ndatasets*dataspan-1, bin=1, $
 reverse_indices=ri), dataspan, ndatasets)

then the i-vector (in JD's terminology) for data set j runs from

Page 3 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

ri[j*dataspan] to ri[(j+1)*dataspan-1]. These can be used directly
to index the o-vector. To get the original element in data set j
from the value in the o-vector, subtract j*datasetsize[0]. For
example,
where are the 3's in datasets[*,1]?

IDL> print, ri[ri[1*dataspan+3]:ri[1*dataspan+3+1]-1] - 1*datasetsize
[0]
 1 3

A more interesting question is "where are the 3's in all of the
datasets"?
This can in fact be done without loops! First, let's look at the loop
version:

for i=0,ndatasets-1 do begin
 h = histogram(datasets[*,i], min=minval, max=maxval,
reverse_indices=ri1)
 if h[3] gt 0 then print, ri1[ri1[3]:ri1[3+1]-1]
endfor
 3 5
 1 3
 3 7
 8 9
 8
 0

Using a combination of chunk indexing and "chunk index generation"
(i.e. the solution to Wox's problem of a few weeks ago):

n = h_new[lindgen(ndatasets)*dataspan+3]
h2=histogram(total(n>0,/CUMULATIVE,/int)-1,/
BINSIZE,MIN=0,REVERSE_INDICES=ri2)
nh=n_elements(h2)
chunkind=ri2[0:nh-1]-ri2[0]
l1=((l=lindgen(((nm=ndatasets>(max(n)))),nm) mod nm))[where((l lt $
 (rebin(transpose(n),nm,nm,/sample))))]
where3 = [[chunkind],[ri[ri[chunkind*dataspan+3]+l1] mod datasetsize
[0]]]

where3 is now a N3 x 2 array containing the data set and index within
that
data set of every value of 3 (of which there are N3=10 in this
example):

IDL> print, transpose(where3)
 0 3
 0 5

Page 4 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 1 1
 1 3
 2 3
 2 7
 3 8
 3 9
 4 8
 5 0

One caveat with this method is that it can be quite wasteful of
memory.
The full histogram contains dataspan x ndatasets entries, but really
only
ndatasets^2 of them can be non-zero. If dataspan is much larger than
ndatasets,
as might be the case if the values from each data set don't appear in
the
other data sets, then you might run into memory problems pretty
quickly.
You can try to work around this a bit by using UNIQ to compress the
values
that get fed into the histogram, but it makes it much more complicated
to extract
the original information back out.

-Jeremy.

Page 5 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

