
Subject: For-loop vs. Dimensional Juggling relative performance
Posted by Gray on Tue, 09 Feb 2010 04:26:08 GMT
View Forum Message <> Reply to Message

Hi folks,

I recently wrote my own version of SRCOR from the NASA Astrolib. Just
as a reminder, the program takes two lists of 2D coordinates and finds
matches where the distance is less than some cutoff. SRCOR uses a for-
loop to step through the first list, comparing the distance of each
coordinate-pair from every point in the second list. My version uses
matrix multiplication and dimensional juggling to avoid the for-loop.

For n1 = 2143 and n2 = 2115, SRCOR is faster (0.16 seconds to my 0.53
on my macbook); however, for n1 = 25 and n2 = 26, mine is faster
(1.8e-4 seconds to 4.2e-4). Is there any way to predict what kind of
list sizes will be faster with each method, without making some random
data and using brute force?

The relevant code is:

SRCOR (dcr2 is the cutoff, option eq 2 ignores the cutoff) -->

 FOR i=0L,n1-1 DO BEGIN
 xx = x1[i] & yy = y1[i]
 d2=(xx-x2)^2+(yy-y2)^2
 dmch=min(d2,m)
 IF (option eq 2) or (dmch le dcr2) THEN BEGIN
 ind1[nmch] = i
 ind2[nmch] = m
 nmch = nmch+1
 ENDIF
 ENDFOR

My code -->

 lkupx = rebin(indgen(n1),n1,n2) ;make index lookup
tables, so as not to
 lkupy = rebin(transpose(indgen(n2)),n1,n2) ;worry about confusing
1D vs 2D
 ;use matrix multiplication and dim. juggling to fast compute
sqrt((x2-x1)^2+(y2-y1)^2)
 dists =
 sqrt(rebin(x1^2.+y1^2,n1,n2)+rebin(transpose(x2^2.+y2^2),n1, n2)-2*(x1#x2+y1#y2))
 min_x = min(dists,xmatch,dimension=2) ;find the minima in both
directions...
 min_y = min(dists,ymatch,dimension=1) ;this is given in 1D indices
 xm = lkupy[xmatch] ;convert to 2D indices

Page 1 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7013
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30138&goto=69745#msg_69745
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=69745
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ym = lkupx[ymatch]
 ;remove elements w/ distance greater than max_dist, and where the
two lists don't match
 nomatch_x = where(ym[xm] ne indgen(n1) or min_x gt max_dist, nmx)
 if (nmx gt 0) then xm[nomatch_x] = -1
 nomatch_y = where(xm[ym] ne indgen(n2) or min_y gt max_dist, nmy)
 if (nmy gt 0) then ym[nomatch_y] = -1

Thanks!!
--Gray (first time poster)

Subject: Re: For-loop vs. Dimensional Juggling relative performance
Posted by Gray on Thu, 11 Feb 2010 17:22:01 GMT
View Forum Message <> Reply to Message

On Feb 10, 10:51 pm, Jeremy Bailin <astroco...@gmail.com> wrote:
> On Feb 9, 9:54 pm, Gianguido Cianci <gianguido.cia...@gmail.com>
> wrote:
>
>
>
>> On Feb 8, 10:26 pm, Gray <grayliketheco...@gmail.com> wrote:
>
>>> Hi folks,
>
>>> I recently wrote my own version of SRCOR from the NASA Astrolib. Just
>>> as a reminder, the program takes two lists of 2D coordinates and finds
>>> matches where the distance is less than some cutoff. SRCOR uses a for-
>>> loop to step through the first list, comparing the distance of each
>>> coordinate-pair from every point in the second list. My version uses
>>> matrix multiplication and dimensional juggling to avoid the for-loop.
>
>>> For n1 = 2143 and n2 = 2115, SRCOR is faster (0.16 seconds to my 0.53
>>> on my macbook); however, for n1 = 25 and n2 = 26, mine is faster
>>> (1.8e-4 seconds to 4.2e-4). Is there any way to predict what kind of
>>> list sizes will be faster with each method, without making some random
>>> data and using brute force?
>
>>> The relevant code is:
>
>>> SRCOR (dcr2 is the cutoff, option eq 2 ignores the cutoff) -->
>
>>> FOR i=0L,n1-1 DO BEGIN
>>> xx = x1[i] & yy = y1[i]
>>> d2=(xx-x2)^2+(yy-y2)^2
>>> dmch=min(d2,m)
>>> IF (option eq 2) or (dmch le dcr2) THEN BEGIN

Page 2 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7013
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30138&goto=69806#msg_69806
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=69806
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>> ind1[nmch] = i
>>> ind2[nmch] = m
>>> nmch = nmch+1
>>> ENDIF
>>> ENDFOR
>
>>> My code -->
>
>>> lkupx = rebin(indgen(n1),n1,n2) ;make index lookup
>>> tables, so as not to
>>> lkupy = rebin(transpose(indgen(n2)),n1,n2) ;worry about confusing
>>> 1D vs 2D
>>> ;use matrix multiplication and dim. juggling to fast compute
>>> sqrt((x2-x1)^2+(y2-y1)^2)
>>> dists =
>>> sqrt(rebin(x1^2.+y1^2,n1,n2)+rebin(transpose(x2^2.+y2^2),n1, n2)-2*(x1#x2+y1 #y2))
>>> min_x = min(dists,xmatch,dimension=2) ;find the minima in both
>>> directions...
>>> min_y = min(dists,ymatch,dimension=1) ;this is given in 1D indices
>>> xm = lkupy[xmatch] ;convert to 2D indices
>>> ym = lkupx[ymatch]
>>> ;remove elements w/ distance greater than max_dist, and where the
>>> two lists don't match
>>> nomatch_x = where(ym[xm] ne indgen(n1) or min_x gt max_dist, nmx)
>>> if (nmx gt 0) then xm[nomatch_x] = -1
>>> nomatch_y = where(xm[ym] ne indgen(n2) or min_y gt max_dist, nmy)
>>> if (nmy gt 0) then ym[nomatch_y] = -1
>
>>> Thanks!!
>>> --Gray (first time poster)
>
>> Gray, have you tried the inbuilt DISTANCE_MEASURE ? I'd be curious to
>> know if it's any faster.
>
>> --Gianguido
>
> I'd wager that JD's match_2d will knock the socks off both of those...
>
> -Jeremy.

Oy... wish I'd known about match_2d before I spent so much time on
mine. Yes, it kicks both routines' collective butt.

Subject: Re: For-loop vs. Dimensional Juggling relative performance
Posted by MarioIncandenza on Fri, 12 Feb 2010 17:01:40 GMT
View Forum Message <> Reply to Message

Page 3 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5297
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30138&goto=69787#msg_69787
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=69787
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

On Feb 11, 9:22 am, Gray <grayliketheco...@gmail.com> wrote:
> Oy... wish I'd known about match_2d before I spent so much time on
> mine. Yes, it kicks both routines' collective butt.

I, also, have spent much time writing code to do what MATCH_2D does. I
have to remember to check those webpages periodically, as my needs
change...

Subject: Re: For-loop vs. Dimensional Juggling relative performance
Posted by MarioIncandenza on Sat, 13 Feb 2010 00:55:37 GMT
View Forum Message <> Reply to Message

On Feb 12, 9:01 am, Ed Hyer <ejh...@gmail.com> wrote:
> On Feb 11, 9:22 am, Gray <grayliketheco...@gmail.com> wrote:
>
>> Oy... wish I'd known about match_2d before I spent so much time on
>> mine. Yes, it kicks both routines' collective butt.
>
> I, also, have spent much time writing code to do what MATCH_2D does. I
> have to remember to check those webpages periodically, as my needs
> change...

So, today I swapped in a MATCH_2D solution in exchange for some
homebrew hack. I only got about a 400% speedup out of it... :)

Page 4 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5297
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30138&goto=69781#msg_69781
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=69781
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

