Subject: Re: Best way to generate arrays of coordinates for hypersurface
calculations?
Posted by James[2] on Wed, 07 Apr 2010 23:20:35 GMT

View Forum Message <> Reply to Message

I've been working with this problem some more, and | found some
dimensional juggling info on David Fanning's website that helped me
make these arrays in a more straightforward, and flexible, way. |

just create a one-dimensional vector for each axis and pad it out with

a bunch of empty dimensions using REFORM. Then, | can stretch out the
1D vector using REBIN to occupy the entire multidimensional space.

| wrote a program to make these coordinate arrays, which I've posted
here: http://pastebin.com/KVew8MOQ0g . This program includes error
checking on the max/min arguments and type argument. The "meat" is
actually quite brief, however:

function coordinates, mins, maxes, type
...error checking...

sizes = maxes - mins + 1
out = ptrarr(dims)

for i=0, dims[0]-1 do begin
:make a 1D vector containing the indices for this dimension
out[i] = ptr_new(make_array(sizes]i], /index, type=type))
:shift index vector it contains values from min to max,
inclusive
*out[i] +=+ minsJi]
:make a vector to feed into reform for dimensional juggling
rvec = replicate(1,i+1)
;place the index vector into the proper dimension
rvecli] = sizes]i]
;replicate the index vector across all dimensions
*out[i] = rebin(reform(*out[i], rvec), sizes)
endfor
return, out
end

I'd like to add a few more features: mainly, the ability to make
floating point arrays with a range that is smaller than the number of
elements, like a 100x100x100 unit cube for instance. | think this
would make the function quite a bit more complicated, but also a lot
more complete. I'm also still uneasy about calculating functions this
way. It seems like a huge waste of memory, but | can't think of any
other way to do it without using many loops!

James Preiss



http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6962
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30395&goto=70405#msg_70405
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=70405
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: Best way to generate arrays of coordinates for hypersurface
calculations?
Posted by Jeremy Bailin on Thu, 08 Apr 2010 11:01:39 GMT

View Forum Message <> Reply to Message

I'd like to add a few more features: mainly, the ability to make
floating point arrays with a range that is smaller than the number of
elements, like a 100x100x100 unit cube for instance. | think this
would make the function quite a bit more complicated, but also a lot
more complete. I'm also still uneasy about calculating functions this
way. It seems like a huge waste of memory, but | can't think of any
other way to do it without using many loops!

VVVVYVYVYVYVYV

James Preiss

In these cases, on occasion the loops win out. In particular, if the
volume is smaller along one dimension, it might pay to loop over that
dimension (and vectorize the other dimensions as you're doing).
Depends how much memory is actually required - as long as you're
within the physical memory of the machine, the vectorized approach
will win out, but once you get beyond that it may be worth adding a
loop. If you wanted to be clever, you could have your function
evaluation code check to see how much memory would be required to
create the index array and decide what method to use based on that -
but I'd run some timing tests first to make sure that you know where
the crossover is.

-Jeremy.

Page 2 of 2 ---- Cenerated from conp. |l ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30395&goto=70403#msg_70403
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=70403
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

