
Subject: Procedures and Functions - Checking Input Data for Validity
Posted by Aram Panasenco on Sat, 17 Apr 2010 03:27:57 GMT
View Forum Message <> Reply to Message

I tried searching IDL Help for a way to simplify checking for validity
of passed in arguments, but the only thing I was able to find was
documentation of some C macros (please correct me if there actually is
something that can easily allow me to validate function/procedure
input). So I thought of a way to be able to quickly check if the data
falls into a certain type and range.
I propose creating a function that checks input for validity in
accordance with a string of rules. You can think of it as an analogue
to a FORMAT string. The data and the string both get passed into a
function called something along the lines of VALIDATE_INPUT
(preferably something shorter). The function returns 1 if the data
matches the rules defined by the string, and 0 if it doesn't. Here's
what I think the syntax of the string should be:

T

Where:
 - is an optional flag, dictating whether the types specified after it
are inclusive (if the flag is not set) or exclusive (if the
flag is set)
 T is a list of type codes/names separated by commas. The flag
determines whether T specifies what the data should ("inclusive") or
shouldn't ("exclusive") be like.
 - is a second optional flag, dictating whether the range(s) specified
after it should be exclusive or inclusive
 R is an optional range specification. It can be written in standard
mathematical notation (round or square braces)

Type codes/names:
Elements of T can be either type codes from 0 to 15 or type names such
as UNDEFINED, DOUBLE, or POINTER. Since it is very easy for a rule
processor to differentiate between the two, I think it can be ok to
use either one.
All the type codes and names can be found in the documentation for the
SIZE function in the IDL reference guide.

Examples of T:
" - NaN"
 All data that contains NaN will return 0
" Double, Float "
 Only Double and Float data will return 1
" - 12,13,14,15"
 All unsigned number types will return 0

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7048
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30430&goto=70490#msg_70490
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=70490
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Range Notation:
Range defines the numerical boundaries of the data. Range
specification will be ignored for non-numerical data. Range will be
written in the form (MIN,MAX) or (N), where the braces can be either
round or square. A round brace indicates an open boundary (the number
is not part of the range), and a square brace indicates a closed
boundary (the number is part of the range). The range will accept
numbers OR the IDL constant system variables !pi, !dpi, !dtor, and !
radeg OR the keyword !infinity (not an actual IDL keyword).

Examples of R:
" (-!pi , !pi) "
 All data within the range, excluding -pi and pi, will return 1
" (0,100] "
 All data within the range, excluding 0, will return 1
" - (0) "
 For single numbers, it won't matter whether you use round or curly
brackets.
 In this case, all data that's not equal to 0 will return 1
" "
 All data from -100 to 100, excluding 0, will return 1
" - (0,!infinity)"
 All data from 0 to infinity, excluding 0, will return 0 (all
numbers greater than 0 will return 0)
 Note that it's ok, while not recommended (for good math's sake),
to brace !infinity with a square bracket

Example of using the function (named VALIDATE_INPUT here):

; I have a spherical polygon that I want to
; move around while keeping maximum
; precision. The polygon's spherical
; coordinates are kept in a variable called
; SphVertices, and I don't want the longitude
; values to go out of the range (0,2*!pi) and
; the latitude values to go out of range
; (-!pi,!pi). I can use VALIDATE_INPUT:

pro RenderPolygon, sphVertices
 e = VALIDATE_INPUT(sphVertices , "DOUBLE (0,2*!pi)") and $
 VALIDATE_INPUT(sphVertices[1,*] , "DOUBLE (-!pi,!pi)")
 if (~e) then HandleError("INVALID INPUT: Polygon Vertices")
 ...
 ...
end

; I have a routine that controls a list of files.
; The routine should never be passed a

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; negative number or a non-integer. I can
; use VALIDATE_INPUT:

function SelectFileFromList, index
 e = VALIDATE_INPUT(index , "INT,UINT [0,!infnity)")
 if (~e) then HandleError("INVALID INPUT: Invalid Index for
Filelist")
 ...
 ...
end

Please share your thoughts on a function like that. Would it be
worthwhile to code something like that. Can you think of any
improvements?

~Aram Panasenco

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

