Subject: Re: Creating a new image from an image input in IDL
Posted by bcubeb3 on Wed, 05 May 2010 11:38:23 GMT

View Forum Message <> Reply to Message

On May 5, 2:45 am, bcubeb3 <barry.brian.barr...@gmail.com> wrote:
After typing this line of code:
IMAGE=READ_TIFF(FILEPATH('/bin/butterfly.tiff"))

help, IMAGE

| get the output
IMAGE BYTE = Array[3, 4800, 6000]

Now | want to write a computer program to systematically loop through
each of the n x n pixels of the image and to use a coordinate system

in pixel units to compute new coordinates based on the formula theta_s
= theta - (size parameter of your choosing in units of

pixels)*theta_hat.

The vector theta_s tells me where to look in the original image to
extract intensity information which will then store in my image array.

| will use a bilinear scheme when assigning new intensity values that
will be stored for my newly created image array theta. Now | have no
idea how to even begin. | was looking for stuff online and | was
looking at help manuals but all efforts proved futile. Let me know of
your suggestions and | greatly appreciate your help on this.

VVVVVVVVVVVVVVVVVYVYVYVYVYV

-Barry

FOllow up.

Sorry for not being specific. The following describes the algorithm |
have to code up but can't figure how to set up a blank n x n pixel

image or how to compute new coordinates theta using a transformation

of your choosing or how to use the bilinear interpolation scheme to
extract the intensity for each pixel. This is a gravitational lensing
problem. Any help of any form is greatly appreciated. | am a newbie so
| am new to IDL and it's hard for me to find the routine that does the
trick since there are so many of them and | tried google with no luck.
You don't have to solve the problem just a direction of where to start

is much appreciated.

» Choose a size (in units of pixels) for the Einstein radius.

» Set up a blank n x n-pixel image-plane array (to match in size your

n x n source image).

» Set up your computer program to systematically loop through each of
the n x n pixels in your image-plane array.

Page 1 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7081
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30540&goto=70804#msg_70804
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=70804
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

to extract the intensity which you will then store in your image array

pixels in the original image. Therefore, you will need to interpolate
the intensity among the nearest four pixels. A bilinear interpolation
scheme is outlined below.

* Finally, after looping through all pixels in the image plane, and
assigning the appropriate intensity values, you will have constructed
the lensed image.

Subject: Re: Creating a new image from an image input in IDL
Posted by Jeremy Bailin on Wed, 05 May 2010 12:01:00 GMT

View Forum Message <> Reply to Message

On May 5, 2:45 am, bcubeb3 <barry.brian.barr...@gmail.com> wrote:
After typing this line of code:
IMAGE=READ_TIFF(FILEPATH('/bin/butterfly.tiff))

help, IMAGE

| get the output
IMAGE BYTE = Array[3, 4800, 6000]

Now | want to write a computer program to systematically loop through
each of the n x n pixels of the image and to use a coordinate system

in pixel units to compute new coordinates based on the formula theta_s
= theta - (size parameter of your choosing in units of

pixels)*theta_hat.

The vector theta_s tells me where to look in the original image to
extract intensity information which will then store in my image array.

| will use a bilinear scheme when assigning new intensity values that
will be stored for my newly created image array theta. Now | have no
idea how to even begin. | was looking for stuff online and | was
looking at help manuals but all efforts proved futile. Let me know of
your suggestions and | greatly appreciate your help on this.

VVVVVVVVVVVVVVVYVVYVYVYVYVYV

-Barry

So | think what you're saying (please correct me if I've
misunderstood!) is that you have a simple transformation between the
pixel coordinates of the new image and the pixel coordinates of the
old image. So there's two steps here:

1) Calculate the transformation for each of the pixel locations of the
new image
2) Copy the image values over

Page 2 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30540&goto=70802#msg_70802
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=70802
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

For 1) | would do something like this:

; size of image:

imagesize = size(image,/dimen)
nchan=imagesize[0]
nx=imagesize[1]
ny=imagesize[2]

npix = nx*ny

; get a 2D list of all pixel coordinates. This is going to take a LOT
of memory

; for a 4800x6000 image!

newcoords_2d = array_indices([nx,ny], lindgen(npix), /dimen)

; apply the transformation. | don't really understand your formula,

. but hopefully this example will help you.

; reform is needed to flatten it instead of being 1XNPIX

; X coordinate in old image, as a linear combination of X and Y

; coordinates of new image (oldX = A*newX + B*newY)

oldcoordsX = reform(A * newcoords[0,*] + B * newcoords[1,*], npix)
; Y coordinates in new image, as a linear combination of X and Y

; coordinates of new image (oldY = C*newX + D*newY)

oldcoordsY = reform(C * newcoords[0,*] + D * newcoords[1,*], npix)

Once you've done that, copying it over is easy (though again, very
memory-intensive):

newimage = bytarr(imagesize)

for chan=0,2 do newimage[chan,*,*] = oldimage[replicate(chan,npix),

oldcoordsX, oldcoordsY]

(NOTE: COMPLETELY UNTESTED)

-Jeremy.

Subject: Re: Creating a new image from an image input in IDL
Posted by bcubeb3 on Wed, 05 May 2010 13:37:22 GMT

View Forum Message <> Reply to Message

On May 5, 8:01 am, Jeremy Bailin <astroco...@gmail.com> wrote:

> On May 5, 2:45 am, bcubeb3 <barry.brian.barr...@gmail.com> wrote:
>

>
>

Page 3 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7081
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30540&goto=70798#msg_70798
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=70798
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> After typing this line of code:
>> IMAGE=READ_TIFF(FILEPATH('/bin/butterfly.tiff"))
>> help, IMAGE

>> | get the output
>> IMAGE BYTE = Array[3, 4800, 6000]

>> Now | want to write a computer program to systematically loop through
>> each of the n x n pixels of the image and to use a coordinate system
>> in pixel units to compute new coordinates based on the formula theta_s
>> = theta - (size parameter of your choosing in units of

>> pixels)*theta_hat.

>> The vector theta_s tells me where to look in the original image to

>> extract intensity information which will then store in my image array.
>> | will use a bilinear scheme when assigning new intensity values that
>> will be stored for my newly created image array theta. Now | have no
>> jdea how to even begin. | was looking for stuff online and | was

>> |ooking at help manuals but all efforts proved futile. Let me know of
>> your suggestions and | greatly appreciate your help on this.

>> -Barry

So | think what you're saying (please correct me if I've
misunderstood!) is that you have a simple transformation between the
pixel coordinates of the new image and the pixel coordinates of the
old image. So there's two steps here:

1) Calculate the transformation for each of the pixel locations of the
new image
2) Copy the image values over

For 1) | would do something like this:

; size of image:

imagesize = size(image,/dimen)
nchan=imagesize[0]
nx=imagesize[1]
ny=imagesize[2]

npix = nx*ny

; get a 2D list of all pixel coordinates. This is going to take a LOT
of memory

; for a 4800x6000 image!

newcoords_2d = array_indices([nx,ny], lindgen(npix), /dimen)

; apply the transformation. | don't really understand your formula,
; but hopefully this example will help you.

VVVVVVVVVVVVVVVVVVVVVYVYVYVYVYV

Page 4 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; reform is needed to flatten it instead of being 1XNPIX

; X coordinate in old image, as a linear combination of X and Y

; coordinates of new image (oldX = A*newX + B*newY)

oldcoordsX = reform(A * newcoords[0,*] + B * newcoords[1,*], npix)
; 'Y coordinates in new image, as a linear combination of X and Y

; coordinates of new image (oldY = C*newX + D*newY)

oldcoordsY = reform(C * newcoords[0,*] + D * newcoords[1,*], npix)

memory-intensive):

newimage = bytarr(imagesize)
for chan=0,2 do newimage[chan,*,*] = oldimage[replicate(chan,npix),
oldcoordsX, oldcoordsY]

>
>
>
>
>
>
>
>
> Once you've done that, copying it over is easy (though again, very
>
>
>
>
>
>
> (NOTE: COMPLETELY UNTESTED)

>

>

-Jeremy.

THIS IS RIGHT you understood my problem. | ran your code and it
works.

The only question | have is how would you use a bilinear interpolation
then. It is important that | take that into account for the after

picture after the transformation. | am reading in wikipedia what it
is. | am assuming bilinear interpolation is needed since the
transformation move pixels to fractional coordinates ??? But in any
case how would that be done. | can tweak the transformation, but |
think you gave me a great start. | am new so it took a while to
understand what your code did. | am still not clear what this line
does:

newcoords = array_indices([nx,ny], lindgen(npix), /dimen)

It initializes an array to lindgen(npix) of the same size of the array
of original pic???

Also for the transformation,
ie.,
oldcoordsX = reform(A * newcoords[0,*] + B * newcoords[1,*], npix)

is oldcoordsX a known or is newcoords a known. From this fragment of
code, it leads me to believe that newcoords is given and oldcoordsX is
being solved by the transformation which to me means that oldcoords is
really the new coordinates after the transformation. Not entirely sure

if | am understanding your code,but it ran and | saw a before and

after picture.

best,
Barry

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: Creating a new image from an image input in IDL
Posted by Jeremy Bailin on Wed, 05 May 2010 13:57:00 GMT

View Forum Message <> Reply to Message

The only question | have is how would you use a bilinear interpolation
then. It is important that | take that into account for the after

picture after the transformation. | am reading in wikipedia what it

is. | am assuming bilinear interpolation is needed since the
transformation move pixels to fractional coordinates ??? But in any
case how would that be done.

V V.V V VYV

Yes that's exactly right, for your problem you will want to do
bilinear interpolation because you'll end up with fractional pixel
coordinates.

The built-in IDL routine INTERPOLATE should work for you. You can use
it by replacing:

oldimage|[replicate(chan,npix), oldcoordsX, oldcoordsY]
in the last line with:

interpolate(oldimage[chan,*,*], oldcoordsX, oldcoordsY)

| am still not clear what this line
does:
newcoords = array_indices([nx,ny], lindgen(npix), /dimen)

>
>
>
>
> [tinitializes an array to lindgen(npix) of the same size of the array

> of original pic???

ARRAY _INDICES maps between 1D indices and 2D coordinates. In other
words, if you have an NX x NY array, you can refer to each element by

its 2D coordinates [X,Y] or by a 1D index X + Y*NX. LINDGEN gives you
a list of all 1D indices, and then ARRAY _INDICES turns those into X,Y
pairs.

Also for the transformation,
i.e.,
oldcoordsX = reform(A * newcoords[0,*] + B * newcoords[1,*], npix)

is oldcoordsX a known or is newcoords a known. From this fragment of
code, it leads me to believe that newcoords is given and oldcoordsX is
being solved by the transformation which to me means that oldcoords is
really the new coordinates after the transformation. Not entirely sure

if | am understanding your code,but it ran and | saw a before and

after picture.

VVVVYVYVYVVYVYV

Page 6 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30540&goto=70796#msg_70796
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=70796
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Yes, that's correct. You are calculating the coordinates in the old

image (oldcoords) that correspond to a given known position in the new
image (newcoords). If your transformation equation only goes the other
way then things are more complicated...

-Jeremy.

Page 7 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

