
Subject: Cannot understand a part of the IDL routine!! pls help!!
Posted by bala murugan on Fri, 21 May 2010 21:33:05 GMT
View Forum Message <> Reply to Message

The following is a part of the IDL routine for region grow. The
following three lines of code is used to define the pixels that is the
ROI pixels.
x = FINDGEN(16*16) MOD 16 + 276
y = LINDGEN(16*16) / 16 + 254
roiPixels = x + y * imgDims[0]

The question is how does it define the ROI pixels?
I dont see how it does........ Somebody please help me by giving a
simple and clear description.

Thanks,
B

Subject: Re: Cannot understand a part of the IDL routine!! pls help!!
Posted by David Fanning on Sun, 23 May 2010 16:07:34 GMT
View Forum Message <> Reply to Message

bala murugan writes:

> The following is a part of the IDL routine for region grow. The
> following three lines of code is used to define the pixels that is the
> ROI pixels.
> x = FINDGEN(16*16) MOD 16 + 276
> y = LINDGEN(16*16) / 16 + 254
> roiPixels = x + y * imgDims[0]
>
> The question is how does it define the ROI pixels?
> I dont see how it does........ Somebody please help me by giving a
> simple and clear description.

What is happening here is the IDL is turning one-dimensional
image indices into two-dimensional image indices. Before
the advent of the function Array_Indices, we always had
to do this by hand. This code was obviously written in
those long-ago dark days.

Here is an article that explains this process in some
detail:

 http://www.dfanning.com/tips/where_to_2d.html

Page 1 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7057
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30585&goto=70925#msg_70925
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=70925
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30585&goto=71063#msg_71063
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=71063
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Cheers,

David

--
David Fanning, Ph.D.
Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.dfanning.com/
Sepore ma de ni thui. ("Perhaps thou speakest truth.")

Subject: Re: Cannot understand a part of the IDL routine!! pls help!!
Posted by Jeremy Bailin on Mon, 24 May 2010 12:16:12 GMT
View Forum Message <> Reply to Message

On May 23, 11:07 am, David Fanning <n...@dfanning.com> wrote:
> bala murugan writes:
>> The following is a part of the IDL routine for region grow. The
>> following three lines of code is used to define the pixels that is the
>> ROI pixels.
>> x = FINDGEN(16*16) MOD 16 + 276
>> y = LINDGEN(16*16) / 16 + 254
>> roiPixels = x + y * imgDims[0]
>
>> The question is how does it define the ROI pixels?
>> I dont see how it does........ Somebody please help me by giving a
>> simple and clear description.
>
> What is happening here is the IDL is turning one-dimensional
> image indices into two-dimensional image indices. Before
> the advent of the function Array_Indices, we always had
> to do this by hand. This code was obviously written in
> those long-ago dark days.
>
> Here is an article that explains this process in some
> detail:
>
> http://www.dfanning.com/tips/where_to_2d.html
>
> Cheers,
>
> David
>
> --
> David Fanning, Ph.D.
> Fanning Software Consulting, Inc.
> Coyote's Guide to IDL Programming:http://www.dfanning.com/
> Sepore ma de ni thui. ("Perhaps thou speakest truth.")

Page 2 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30585&goto=71061#msg_71061
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=71061
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Incidentally, is there an in-built routine that I've missed that does
the reverse mapping (multi-D to 1D)? I know I've written my own and I
suspect others have too, but it seems like there ought to be a built-
in version.

-Jeremy.

Subject: Re: Cannot understand a part of the IDL routine!! pls help!!
Posted by Brian Daniel on Mon, 24 May 2010 18:26:49 GMT
View Forum Message <> Reply to Message

On 24 May, 08:16, Jeremy Bailin <astroco...@gmail.com> wrote:
> On May 23, 11:07 am, David Fanning <n...@dfanning.com> wrote:
>
>
>
>
>
>> bala murugan writes:
>>> The following is a part of the IDL routine for region grow. The
>>> following three lines of code is used to define the pixels that is the
>>> ROI pixels.
>>> x = FINDGEN(16*16) MOD 16 + 276
>>> y = LINDGEN(16*16) / 16 + 254
>>> roiPixels = x + y * imgDims[0]
>
>>> The question is how does it define the ROI pixels?
>>> I dont see how it does........ Somebody please help me by giving a
>>> simple and clear description.
>
>> What is happening here is the IDL is turning one-dimensional
>> image indices into two-dimensional image indices. Before
>> the advent of the function Array_Indices, we always had
>> to do this by hand. This code was obviously written in
>> those long-ago dark days.
>
>> Here is an article that explains this process in some
>> detail:
>
>> http://www.dfanning.com/tips/where_to_2d.html
>
>> Cheers,
>
>> David
>
>> --

Page 3 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6897
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30585&goto=71054#msg_71054
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=71054
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> David Fanning, Ph.D.
>> Fanning Software Consulting, Inc.
>> Coyote's Guide to IDL Programming:http://www.dfanning.com/
>> Sepore ma de ni thui. ("Perhaps thou speakest truth.")
>
> Incidentally, is there an in-built routine that I've missed that does
> the reverse mapping (multi-D to 1D)? I know I've written my own and I
> suspect others have too, but it seems like there ought to be a built-
> in version.
>
> -Jeremy.- Hide quoted text -
>
> - Show quoted text -

reform does the trick. For example:
image = indgen(20,30,3)
help, image
IMAGE INT = Array[20, 30, 3]
image_vector = reform(image,20*30*3)
help, image_vector
IMAGE_VECTOR INT = Array[1800]

-Brian

Subject: Re: Cannot understand a part of the IDL routine!! pls help!!
Posted by Jeremy Bailin on Tue, 25 May 2010 13:23:48 GMT
View Forum Message <> Reply to Message

On May 24, 1:26 pm, Brian Daniel <Daniels...@yahoo.com> wrote:
> On 24 May, 08:16, Jeremy Bailin <astroco...@gmail.com> wrote:
>
>
>
>
>
>> On May 23, 11:07 am, David Fanning <n...@dfanning.com> wrote:
>
>>> bala murugan writes:
>>>> The following is a part of the IDL routine for region grow. The
>>>> following three lines of code is used to define the pixels that is the
>>>> ROI pixels.
>>>> x = FINDGEN(16*16) MOD 16 + 276
>>>> y = LINDGEN(16*16) / 16 + 254
>>>> roiPixels = x + y * imgDims[0]
>
>>>> The question is how does it define the ROI pixels?

Page 4 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30585&goto=71039#msg_71039
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=71039
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>> I dont see how it does........ Somebody please help me by giving a
>>>> simple and clear description.
>
>>> What is happening here is the IDL is turning one-dimensional
>>> image indices into two-dimensional image indices. Before
>>> the advent of the function Array_Indices, we always had
>>> to do this by hand. This code was obviously written in
>>> those long-ago dark days.
>
>>> Here is an article that explains this process in some
>>> detail:
>
>>> http://www.dfanning.com/tips/where_to_2d.html
>
>>> Cheers,
>
>>> David
>
>>> --
>>> David Fanning, Ph.D.
>>> Fanning Software Consulting, Inc.
>>> Coyote's Guide to IDL Programming:http://www.dfanning.com/
>>> Sepore ma de ni thui. ("Perhaps thou speakest truth.")
>
>> Incidentally, is there an in-built routine that I've missed that does
>> the reverse mapping (multi-D to 1D)? I know I've written my own and I
>> suspect others have too, but it seems like there ought to be a built-
>> in version.
>
>> -Jeremy.- Hide quoted text -
>
>> - Show quoted text -
>
> reform does the trick. For example:
> image = indgen(20,30,3)
> help, image
> IMAGE INT = Array[20, 30, 3]
> image_vector = reform(image,20*30*3)
> help, image_vector
> IMAGE_VECTOR INT = Array[1800]
>
> -Brian

Yes, you can of course use l/indgen to give you a multi-D array that
you can use for the mapping (I'm not sure what the point of the reform
is - I would just use image[4,3,0] to find out the 1D index of the
point (4,3,0)). But it requires generating an auxiliary array with the
required dimensions, which can be very wasteful of memory in the

Page 5 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

applications where I tend to use it!

-Jeremy.

Subject: Re: Cannot understand a part of the IDL routine!! pls help!!
Posted by Brian Daniel on Tue, 25 May 2010 19:13:06 GMT
View Forum Message <> Reply to Message

On May 25, 9:23 am, Jeremy Bailin <astroco...@gmail.com> wrote:
> On May 24, 1:26 pm, Brian Daniel <Daniels...@yahoo.com> wrote:
>
>
>
>
>
>> On 24 May, 08:16, Jeremy Bailin <astroco...@gmail.com> wrote:
>
>>> On May 23, 11:07 am, David Fanning <n...@dfanning.com> wrote:
>
>>>> bala murugan writes:
>>>> > The following is a part of the IDL routine for region grow. The
>>>> > following three lines of code is used to define the pixels that is the
>>>> > ROI pixels.
>>>> > x = FINDGEN(16*16) MOD 16 + 276
>>>> > y = LINDGEN(16*16) / 16 + 254
>>>> > roiPixels = x + y * imgDims[0]
>
>>>> > The question is how does it define the ROI pixels?
>>>> > I dont see how it does........ Somebody please help me by giving a
>>>> > simple and clear description.
>
>>>> What is happening here is the IDL is turning one-dimensional
>>>> image indices into two-dimensional image indices. Before
>>>> the advent of the function Array_Indices, we always had
>>>> to do this by hand. This code was obviously written in
>>>> those long-ago dark days.
>
>>>> Here is an article that explains this process in some
>>>> detail:
>
>>>> http://www.dfanning.com/tips/where_to_2d.html
>
>>>> Cheers,
>
>>>> David
>
>>>> --

Page 6 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6897
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30585&goto=71035#msg_71035
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=71035
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>> David Fanning, Ph.D.
>>>> Fanning Software Consulting, Inc.
>>>> Coyote's Guide to IDL Programming:http://www.dfanning.com/
>>>> Sepore ma de ni thui. ("Perhaps thou speakest truth.")
>
>>> Incidentally, is there an in-built routine that I've missed that does
>>> the reverse mapping (multi-D to 1D)? I know I've written my own and I
>>> suspect others have too, but it seems like there ought to be a built-
>>> in version.
>
>>> -Jeremy.- Hide quoted text -
>
>>> - Show quoted text -
>
>> reform does the trick. For example:
>> image = indgen(20,30,3)
>> help, image
>> IMAGE INT = Array[20, 30, 3]
>> image_vector = reform(image,20*30*3)
>> help, image_vector
>> IMAGE_VECTOR INT = Array[1800]
>
>> -Brian
>
> Yes, you can of course use l/indgen to give you a multi-D array that
> you can use for the mapping (I'm not sure what the point of the reform
> is - I would just use image[4,3,0] to find out the 1D index of the
> point (4,3,0)). But it requires generating an auxiliary array with the
> required dimensions, which can be very wasteful of memory in the
> applications where I tend to use it!
>
> -Jeremy.

I was using indgen as an illustration. I thought you were looking for
a way to change a multi dimensional array into a vectorized array. I
see now you'd like the compliment to array_indices.pro. Say you have
an array of size x_dim, y_dim and z_dim. The index of a particular
point in the array (xi,yi,zi) is given as
index = xi + yi * x_dim + zi * x_dim * y_dim.

It can be generalized to N dimensions by
index = x[0] + x[1]*dim[0] +x[2]*dim[1]*dim[0] + ... +
x[N-1]*dim[N-2]*dim[N-3]*...*dim[0].

I haven't seen a library routine that does it, but I usually only work
in 2 or 3 dimensions and hardcode it in. Hope this helps.

-Brian

Page 7 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: Cannot understand a part of the IDL routine!! pls help!!
Posted by Brian Daniel on Tue, 25 May 2010 19:16:05 GMT
View Forum Message <> Reply to Message

On May 25, 3:13 pm, Brian Daniel <Daniels...@yahoo.com> wrote:
> On May 25, 9:23 am, Jeremy Bailin <astroco...@gmail.com> wrote:
>
>
>
>
>
>> On May 24, 1:26 pm, Brian Daniel <Daniels...@yahoo.com> wrote:
>
>>> On 24 May, 08:16, Jeremy Bailin <astroco...@gmail.com> wrote:
>
>>>> On May 23, 11:07 am, David Fanning <n...@dfanning.com> wrote:
>
>>>> > bala murugan writes:
>>>> > > The following is a part of the IDL routine for region grow. The
>>>> > > following three lines of code is used to define the pixels that is the
>>>> > > ROI pixels.
>>>> > > x = FINDGEN(16*16) MOD 16 + 276
>>>> > > y = LINDGEN(16*16) / 16 + 254
>>>> > > roiPixels = x + y * imgDims[0]
>
>>>> > > The question is how does it define the ROI pixels?
>>>> > > I dont see how it does........ Somebody please help me by giving a
>>>> > > simple and clear description.
>
>>>> > What is happening here is the IDL is turning one-dimensional
>>>> > image indices into two-dimensional image indices. Before
>>>> > the advent of the function Array_Indices, we always had
>>>> > to do this by hand. This code was obviously written in
>>>> > those long-ago dark days.
>
>>>> > Here is an article that explains this process in some
>>>> > detail:
>
>>>> > http://www.dfanning.com/tips/where_to_2d.html
>
>>>> > Cheers,
>
>>>> > David
>
>>>> > --
>>>> > David Fanning, Ph.D.
>>>> > Fanning Software Consulting, Inc.
>>>> > Coyote's Guide to IDL Programming:http://www.dfanning.com/
>>>> > Sepore ma de ni thui. ("Perhaps thou speakest truth.")

Page 8 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6897
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30585&goto=71034#msg_71034
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=71034
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>>>> Incidentally, is there an in-built routine that I've missed that does
>>>> the reverse mapping (multi-D to 1D)? I know I've written my own and I
>>>> suspect others have too, but it seems like there ought to be a built-
>>>> in version.
>
>>>> -Jeremy.- Hide quoted text -
>
>>>> - Show quoted text -
>
>>> reform does the trick. For example:
>>> image = indgen(20,30,3)
>>> help, image
>>> IMAGE INT = Array[20, 30, 3]
>>> image_vector = reform(image,20*30*3)
>>> help, image_vector
>>> IMAGE_VECTOR INT = Array[1800]
>
>>> -Brian
>
>> Yes, you can of course use l/indgen to give you a multi-D array that
>> you can use for the mapping (I'm not sure what the point of the reform
>> is - I would just use image[4,3,0] to find out the 1D index of the
>> point (4,3,0)). But it requires generating an auxiliary array with the
>> required dimensions, which can be very wasteful of memory in the
>> applications where I tend to use it!
>
>> -Jeremy.
>
> I was using indgen as an illustration. I thought you were looking for
> a way to change a multi dimensional array into a vectorized array. I
> see now you'd like the compliment to array_indices.pro. Say you have
> an array of size x_dim, y_dim and z_dim. The index of a particular
> point in the array (xi,yi,zi) is given as
> index = xi + yi * x_dim + zi * x_dim * y_dim.
>
> It can be generalized to N dimensions by
> index = x[0] + x[1]*dim[0] +x[2]*dim[1]*dim[0] + ... +
> x[N-1]*dim[N-2]*dim[N-3]*...*dim[0].
>
> I haven't seen a library routine that does it, but I usually only work
> in 2 or 3 dimensions and hardcode it in. Hope this helps.
>
> -Brian

Oh, and in the generalized case, x is a vector of size N consisting of
dimensional indices and dim is an N sized vector of the array
dimensions.

Page 9 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: Cannot understand a part of the IDL routine!! pls help!!
Posted by Jeremy Bailin on Wed, 26 May 2010 12:51:41 GMT
View Forum Message <> Reply to Message

On May 25, 3:13 pm, Brian Daniel <Daniels...@yahoo.com> wrote:
> On May 25, 9:23 am, Jeremy Bailin <astroco...@gmail.com> wrote:
>
>
>
>
>
>> On May 24, 1:26 pm, Brian Daniel <Daniels...@yahoo.com> wrote:
>
>>> On 24 May, 08:16, Jeremy Bailin <astroco...@gmail.com> wrote:
>
>>>> On May 23, 11:07 am, David Fanning <n...@dfanning.com> wrote:
>
>>>> > bala murugan writes:
>>>> > > The following is a part of the IDL routine for region grow. The
>>>> > > following three lines of code is used to define the pixels that is the
>>>> > > ROI pixels.
>>>> > > x = FINDGEN(16*16) MOD 16 + 276
>>>> > > y = LINDGEN(16*16) / 16 + 254
>>>> > > roiPixels = x + y * imgDims[0]
>
>>>> > > The question is how does it define the ROI pixels?
>>>> > > I dont see how it does........ Somebody please help me by giving a
>>>> > > simple and clear description.
>
>>>> > What is happening here is the IDL is turning one-dimensional
>>>> > image indices into two-dimensional image indices. Before
>>>> > the advent of the function Array_Indices, we always had
>>>> > to do this by hand. This code was obviously written in
>>>> > those long-ago dark days.
>
>>>> > Here is an article that explains this process in some
>>>> > detail:
>
>>>> > http://www.dfanning.com/tips/where_to_2d.html
>
>>>> > Cheers,
>
>>>> > David
>
>>>> > --
>>>> > David Fanning, Ph.D.
>>>> > Fanning Software Consulting, Inc.
>>>> > Coyote's Guide to IDL Programming:http://www.dfanning.com/
>>>> > Sepore ma de ni thui. ("Perhaps thou speakest truth.")

Page 10 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30585&goto=71111#msg_71111
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=71111
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>>>> Incidentally, is there an in-built routine that I've missed that does
>>>> the reverse mapping (multi-D to 1D)? I know I've written my own and I
>>>> suspect others have too, but it seems like there ought to be a built-
>>>> in version.
>
>>>> -Jeremy.- Hide quoted text -
>
>>>> - Show quoted text -
>
>>> reform does the trick. For example:
>>> image = indgen(20,30,3)
>>> help, image
>>> IMAGE INT = Array[20, 30, 3]
>>> image_vector = reform(image,20*30*3)
>>> help, image_vector
>>> IMAGE_VECTOR INT = Array[1800]
>
>>> -Brian
>
>> Yes, you can of course use l/indgen to give you a multi-D array that
>> you can use for the mapping (I'm not sure what the point of the reform
>> is - I would just use image[4,3,0] to find out the 1D index of the
>> point (4,3,0)). But it requires generating an auxiliary array with the
>> required dimensions, which can be very wasteful of memory in the
>> applications where I tend to use it!
>
>> -Jeremy.
>
> I was using indgen as an illustration. I thought you were looking for
> a way to change a multi dimensional array into a vectorized array. I
> see now you'd like the compliment to array_indices.pro. Say you have
> an array of size x_dim, y_dim and z_dim. The index of a particular
> point in the array (xi,yi,zi) is given as
> index = xi + yi * x_dim + zi * x_dim * y_dim.
>
> It can be generalized to N dimensions by
> index = x[0] + x[1]*dim[0] +x[2]*dim[1]*dim[0] + ... +
> x[N-1]*dim[N-2]*dim[N-3]*...*dim[0].
>
> I haven't seen a library routine that does it, but I usually only work
> in 2 or 3 dimensions and hardcode it in. Hope this helps.
>
> -Brian

Yeah, I have a general solution for arbitrary numbers of dimensions in
JBIU:

Page 11 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 http://web.astroconst.org/jbiu/jbiu-doc/misc/multi2index.htm l

I just wish there was a built-in version... I'm sure it would be more
efficient than mine, and when I tend to need this it's always when I'm
juggling enormous multi-dimensional arrays.

(incidentally, now that I look at that code again it occurs to me that
the PRODUCT and TOTAL calls should have the /INTEGER flag... going to
have to put out a major update soon).

-Jeremy.

Page 12 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

