Subject: Re: x-y offsets
Posted by Gray on Tue, 18 May 2010 21:08:55 GMT

View Forum Message <> Reply to Message

On May 18, 4:29 pm, Gray <grayliketheco...@gmail.com> wrote:
Hi all,

This is a variation on the 2D matching problem that I'm having trouble
algorithm-ing (to coin an incredibly awkward word).

| have two sets of XY coordinates of unequal length (i.e., x1/y1/n1,
x2/y2/n2, n1 ne n2). | want to find offsets in both X and Y that
match the two sets as closely as possible (there will obviously be
some unmatched coordinates in the larger set). I'm just looking for
constant offsets, so basically (for n1 < n2) x1 + Cx -> x2,yl + Cy ->
y2, with some elements of x2 and y2 being unmatched. How do | go
about doing this? | don't think | can use JD's MATCH_2D because |
don't know a priori what my matching radius is.

Any suggestions? Thanks, as always!

VVVVVVVVVYVYVYVYVYVYVYVYV

--Gray

To clarify, there can be unmatched coordinates in both lists, but one
of them is guaranteed to have unmatched coords unless nl1 = n2 (which
is possible in my scenario, but unlikely).

Subject: Re: x-y offsets
Posted by Jeremy Bailin on Wed, 19 May 2010 06:50:58 GMT

View Forum Message <> Reply to Message

On May 18, 8:29 pm, Gray <grayliketheco...@gmail.com> wrote:
Hi all,

This is a variation on the 2D matching problem that I'm having trouble
algorithm-ing (to coin an incredibly awkward word).

| have two sets of XY coordinates of unequal length (i.e., x1/y1/n1,
x2/y2/n2, n1 ne n2). | want to find offsets in both X and Y that
match the two sets as closely as possible (there will obviously be
some unmatched coordinates in the larger set). I'm just looking for
constant offsets, so basically (for n1 < n2) x1 + Cx -> x2,yl + Cy ->
y2, with some elements of x2 and y2 being unmatched. How do | go
about doing this? | don't think | can use JD's MATCH_2D because |
don't know a priori what my matching radius is.

VVVVVVVVVYVVYVYVYVYV

Any suggestions? Thanks, as always!

Page 1 of 16 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7013
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30601&goto=70963#msg_70963
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=70963
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30601&goto=70960#msg_70960
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=70960
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> --Gray

| would be tempted to create a 2D histogram based on each set and then
cross-correlate them.

-Jeremy.

Subject: Re: x-y offsets
Posted by Gray on Wed, 19 May 2010 19:45:13 GMT

View Forum Message <> Reply to Message

On May 19, 2:50 am, Jeremy Bailin <astroco...@gmail.com> wrote:
> On May 18, 8:29 pm, Gray <grayliketheco...@gmail.com> wrote:

\

>> Hi all,

>> This is a variation on the 2D matching problem that I'm having trouble
>> algorithm-ing (to coin an incredibly awkward word).

>> | have two sets of XY coordinates of unequal length (i.e., x1/y1l/n1,
>> x2/y2/n2, n1 ne n2). | want to find offsets in both X and Y that

>> match the two sets as closely as possible (there will obviously be

>> some unmatched coordinates in the larger set). I'm just looking for
>> constant offsets, so basically (for n1 < n2) x1 + Cx -> x2, yl1 + Cy ->
>> y2, with some elements of x2 and y2 being unmatched. How do | go
>> about doing this? | don't think | can use JD's MATCH_2D because |
>> don't know a priori what my matching radius is.

>

>> Any suggestions? Thanks, as always!
>

>> --Gray

>

> | would be tempted to create a 2D histogram based on each set and then
> cross-correlate them.
>
>

-Jeremy.

How do you turn the cross-correlation into offsets? And, how do you
intelligently choose a binsize for the histogram?

Page 2 of 16 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7013
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30601&goto=70956#msg_70956
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=70956
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: x-y offsets
Posted by Jeremy Bailin on Thu, 20 May 2010 01:38:08 GMT

View Forum Message <> Reply to Message

On May 19, 7:45 pm, Gray <grayliketheco...@gmail.com> wrote:
> On May 19, 2:50 am, Jeremy Bailin <astroco...@gmail.com> wrote:
>

V V.V V

>> On May 18, 8:29 pm, Gray <grayliketheco...@gmail.com> wrote:

>

>>> Hi all,

>

>>> This is a variation on the 2D matching problem that I'm having trouble
>>> algorithm-ing (to coin an incredibly awkward word).

>

>>> | have two sets of XY coordinates of unequal length (i.e., x1/y1/n1,
>>> x2/y2/n2, n1 ne n2). | want to find offsets in both X and Y that

>>> match the two sets as closely as possible (there will obviously be
>>> some unmatched coordinates in the larger set). I'm just looking for
>>> constant offsets, so basically (for n1 < n2) x1 + Cx -> x2, yl1 + Cy ->
>>> y2, with some elements of x2 and y2 being unmatched. How do | go
>>> about doing this? | don't think | can use JD's MATCH_2D because |
>>> don't know a priori what my matching radius is.

>

>>> Any suggestions? Thanks, as always!
>

>>> --Gray

>

>> | would be tempted to create a 2D histogram based on each set and then
>> cross-correlate them.

>

>> -Jeremy.

>

> How do you turn the cross-correlation into offsets? And, how do you

> intelligently choose a binsize for the histogram?

The first question is the easier one. ;-)

IDL> d = dist(5,5)

IDL> a = fltarr(25,25)

IDL> b = fltarr(25,25)

IDL> a[4,7] =d

IDL> b[0,0] =d

IDL> xcor = fft(/inverse, fft(a)*fft(b,/inverse))
IDL> maxcor = max(abs(xcor),loc)

IDL> print, array_indices(a,loc)

Page 3 of 16 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30601&goto=70955#msg_70955
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=70955
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

4 7

Now, it's easy here because | know that there's one perfect matching
location - it may be more ambiguous in a real situation (in which case
you'll probably to assess the magnitude of all of the peaks within
xcor to see if there are multiple plausible solutions). Also note that
the answer wraps around - i.e. you should treat a value of 24 here as
-1.

As for the binsize, it depends on your application. Ideally you would
make the bins as small as the precision you expect to be able to
achieve in determining the translational offset given your data (or
even better, a factor of two smaller) - but if that means that your 2D
histograms have one million bins in each direction then that won't
work. ;-) So in that case, | would go for a two-step process: in step
1, use the cross-correlation of the entire image using a coarse grid
to get in the right ballpark. Then, if you think you should be good to
within a length L, do a finer resolution cross-correlation just using

a box of length L around each point (you might be able to ram the
boxes all up against each other in a big image so you can do the cross-
correlation of them all at once - never tried it).

-Jeremy.

Subject: Re: x-y offsets
Posted by Craig Markwardt on Thu, 20 May 2010 01:45:18 GMT

View Forum Message <> Reply to Message

On May 18, 4:29 pm, Gray <grayliketheco...@gmail.com> wrote:
Hi all,

This is a variation on the 2D matching problem that I'm having trouble
algorithm-ing (to coin an incredibly awkward word).

| have two sets of XY coordinates of unequal length (i.e., x1/y1/n1,
x2/y2/n2, n1 ne n2). | want to find offsets in both X and Y that
match the two sets as closely as possible (there will obviously be
some unmatched coordinates in the larger set). I'm just looking for
constant offsets, so basically (for n1 < n2) x1 + Cx ->x2, yl1 + Cy ->
y2, with some elements of x2 and y2 being unmatched. How do | go
about doing this? | don't think | can use JD's MATCH_2D because |
don't know a priori what my matching radius is.

VVVVVVVYVVYVYVYVYVYVYV

Any suggestions? Thanks, as always!

This seems like a fragile problem. It seems like the key thing is to
try to select the matching pairs first, and then you can try to refine

Page 4 of 16 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1763
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30601&goto=70954#msg_70954
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=70954
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

the offset determination. If you match incorrectly, then it's
possible for a spoiler pair to corrupt the offset refinement. If you
had an a priori guess for the offset, that would help immensely.

As far as selecting pairs...

Compute the distances between all pairs of points. For your sample,
that would be N1*N2 distance calculations. The result would be a list

of N1*N2 distances. Presumably the "correct” offset would appear most
frequently. One way to check this is make a histogram of the

distances and look for a peak. Here, having an a priori guess is

helpful to choose the bin size and histogram range. Otherwise you
might have to try those iteratively.

Once you have a preferred offset distance, then you should be able to
go through and match pairs reasonably efficiently. Also, you can
enforce the constraint that a pair can only match once.

From that point, it should be easy to compute the mean offset, or if
you have error bars, then the weighted mean offset. But you will
probably have to check for outliers, which correspond with poorly
matched pairs, and then iteratively recompute offset.

As | said, "fragile."

Craig

Subject: Re: x-y offsets
Posted by Jeremy Bailin on Thu, 20 May 2010 02:56:53 GMT

View Forum Message <> Reply to Message

On May 19, 9:38 pm, Jeremy Bailin <astroco...@gmail.com> wrote:
> On May 19, 7:45 pm, Gray <grayliketheco...@gmail.com> wrote:
>

V V V V

>> On May 19, 2:50 am, Jeremy Bailin <astroco...@gmail.com> wrote:

>

>>> On May 18, 8:29 pm, Gray <grayliketheco...@gmail.com> wrote:

>

>>>> Hi all,

>

>>>> This is a variation on the 2D matching problem that I'm having trouble

>>>> algorithm-ing (to coin an incredibly awkward word).
>

Page 5 of 16 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30601&goto=70953#msg_70953
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=70953
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>

>>>>
>

>>>>
>

| have two sets of XY coordinates of unequal length (i.e., x1/y1/n1,
x2/y2/n2, n1 ne n2). | want to find offsets in both X and Y that
match the two sets as closely as possible (there will obviously be
some unmatched coordinates in the larger set). I'm just looking for
constant offsets, so basically (for n1 < n2) x1 + Cx ->x2,yl + Cy ->
y2, with some elements of x2 and y2 being unmatched. How do | go
about doing this? | don't think | can use JD's MATCH_2D because |
don't know a priori what my matching radius is.

Any suggestions? Thanks, as always!

--Gray

>>> | would be tempted to create a 2D histogram based on each set and then
>>> cross-correlate them.

>

>>> -Jeremy.

>

>> How do you turn the cross-correlation into offsets? And, how do you
>> ntelligently choose a binsize for the histogram?

-1.

VVVVVVVVVVVVVVVVVVVVVYVVYVYVYVYVYV

The first question is the easier one. ;-)

IDL> d = dist(5,5)

IDL> a = fltarr(25,25)

IDL> b = fltarr(25,25)

IDL> a[4,7] =d

IDL> b[0,0] =d

IDL> xcor = fft(/inverse, fft(a)*fft(b,/inverse))
IDL> maxcor = max(abs(xcor),loc)

IDL> print, array_indices(a,loc)

4 7

Now, it's easy here because | know that there's one perfect matching
location - it may be more ambiguous in a real situation (in which case
you'll probably to assess the magnitude of all of the peaks within
xcor to see if there are multiple plausible solutions). Also note that
the answer wraps around - i.e. you should treat a value of 24 here as

As for the binsize, it depends on your application. Ideally you would
make the bins as small as the precision you expect to be able to
achieve in determining the translational offset given your data (or
even better, a factor of two smaller) - but if that means that your 2D
histograms have one million bins in each direction then that won't
work. ;-) So in that case, | would go for a two-step process: in step
1, use the cross-correlation of the entire image using a coarse grid
to get in the right ballpark. Then, if you think you should be good to

Page 6 of 16 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

within a length L, do a finer resolution cross-correlation just using

a box of length L around each point (you might be able to ram the
boxes all up against each other in a big image so you can do the cross-
correlation of them all at once - never tried it).

VVVVYVYV

-Jeremy.

Here's a quick implementation. As you can see, it gets to within half
of the

input scatter. I'm sure you could do quite a bit better by, instead of
just using the peak location of the cross-correlation, fit a 2D
Gaussian

to it to find the peak location to well within one bin width.

Actually, | really like Craig's algorithm. | would probably say that

in

my two-step suggestion above, use the cross-correlation as the coarse
step

and then Craig's suggestion as the fine step.

seed=43|
nl = 100l
n2 = 500l

offset = [0.3, -0.15]
scatter = 0.02
subset = floor(randomu(seed,n1)*n2)

; generate random positions

x2 = randomu(seed,n2)

y2 = randomu(seed,n2)

; for a subset of them, offset them and add scatter

x1 = x2[subset] + offset[0] + scatter*randomu(seed,nl)
y1l = y2[subset] + offset[1] + scatter*randomu(seed,nl)

bin = 0.5*scatter

xrange = minmax([x1,x2])
xrange[0] -= bin & xrange[1] += bin
yrange = minmax([y1,y2])
yrange[0] -= bin & yrange[1] += bin

; create 2D histogram of each distribution - effectively an

; image that we can match

imagel = hist_2d(x1, y1, minl=xrange[0],max1=xrange[1],binl=bin, $
min2=yrange[0],max2=yrange[1],bin2=bin)

image2 = hist_2d(x2, y2, minl=xrange[0],max1=xrange[1],bin1=bin, $
min2=yrange[0],max2=yrange[1],bin2=bin)

Page 7 of 16 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

imagesize = size(imagel,/dimen)

; calculate cross-correlation by FT convolution theorem

xcor = fft(/inverse, fft(imagel)*fft(image2,/inverse))

; the peak in the cross-correlation is where they match best
maxcor = max(abs(xcor),loc)

maxindex = array_indices(imagel,loc)

; the FT is periodic, so locations >1/2 of the image size should
; be considered as negative offsets from the edge of the image
for i=0,1 do if maxindex][i] gt imagesize[i]/2 then maxindex[i] -=
imagesize][i]

measuredoffset = maxindex * bin

print, 'Input offsets:',offset
print, '"Measured offsets:’,measuredoffset

Ip.multi=[0,2,1]

red=fsc_color('red")

plot, psym=3, xrange=xrange, yrange=yrange, x2, y2, tittle="Original’, /

o]

oplot, psym=3, x1, y1, color=red

plot, psym=3, xrange=xrange, yrange=yrange, x2, y2, titte='"Matched’, /
iSO

oplot, psym=3, x1-measuredoffset[0], yl-measuredoffset[1], color=red

-Jeremy.

Subject: Re: x-y offsets
Posted by Jeremy Bailin on Thu, 20 May 2010 04:59:26 GMT

View Forum Message <> Reply to Message

On May 20, 2:56 am, Jeremy Bailin <astroco...@gmail.com> wrote:
> On May 19, 9:38 pm, Jeremy Bailin <astroco...@gmail.com> wrote:
>

V V V V

>> On May 19, 7:45 pm, Gray <grayliketheco...@gmail.com> wrote:
:>> On May 19, 2:50 am, Jeremy Bailin <astroco...@gmail.com> wrote:
i>>> On May 18, 8:29 pm, Gray <grayliketheco...@gmail.com> wrote:
z>>> > Hi all,

Page 8 of 16 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30601&goto=70952#msg_70952
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=70952
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>

>>>> > This is a variation on the 2D matching problem that I'm having trouble
>>>> > algorithm-ing (to coin an incredibly awkward word).

>

>>>> > | have two sets of XY coordinates of unequal length (i.e., x1/y1/n1,

>>>> > x2/y2/n2, n1 ne n2). | want to find offsets in both X and Y that
>>>> > match the two sets as closely as possible (there will obviously be

>>>>
>>>>
>>>>
>>>>

> some unmatched coordinates in the larger set). I'm just looking for

>>>> > don't know a priori what my matching radius is.

>

>>>> > Any suggestions? Thanks, as always!

>

>>>> > --Gray

>

>>>> | would be tempted to create a 2D histogram based on each set and then

>>>> cross-correlate them.

>

>>>> -Jeremy.

>

>>> How do you turn the cross-correlation into offsets? And, how do you
>>> intelligently choose a binsize for the histogram?

>

>>
>

>>
>>
>>
>>
>>
>>
>>
>>
>>
>

>>
>>
>>
>>
>>
>>
>

>>
>>
>>
>>

The first question is the easier one. ;-)

IDL> d = dist(5,5)
IDL> a = fltarr(25,25)
IDL> b = fltarr(25,25)
IDL> a[4,7] = d
IDL> b[0,0] =d
IDL> xcor = fft(/inverse, fft(a)*fft(b,/inverse))
IDL> maxcor = max(abs(xcor),loc)
IDL> print, array_indices(a,loc)
4 7

Now, it's easy here because | know that there's one perfect matching
location - it may be more ambiguous in a real situation (in which case
you'll probably to assess the magnitude of all of the peaks within
xcor to see if there are multiple plausible solutions). Also note that
the answer wraps around - i.e. you should treat a value of 24 here as
-1.

As for the binsize, it depends on your application. Ideally you would
make the bins as small as the precision you expect to be able to
achieve in determining the translational offset given your data (or
even better, a factor of two smaller) - but if that means that your 2D

Page 9 of 16 ---- Cenerated from conp. | ang.idl - pvwave archive

> constant offsets, so basically (for n1 < n2) x1 + Cx ->x2, yl1 + Cy ->
> y2, with some elements of x2 and y2 being unmatched. How do | go
> about doing this? | don't think | can use JD's MATCH_2D because |

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> histograms have one million bins in each direction then that won't

>> work. ;-) So in that case, | would go for a two-step process: in step

>> 1, use the cross-correlation of the entire image using a coarse grid

>> to get in the right ballpark. Then, if you think you should be good to

>> within a length L, do a finer resolution cross-correlation just using

>> a box of length L around each point (you might be able to ram the

>> boxes all up against each other in a big image so you can do the cross-
>> correlation of them all at once - never tried it).

>> -Jeremy.

>
> Here's a quick implementation. As you can see, it gets to within half
> of the

> input scatter. I'm sure you could do quite a bit better by, instead of
> just using the peak location of the cross-correlation, fit a 2D

> Gaussian

> to it to find the peak location to well within one bin width.

Here's a more refined version that uses the Gaussian fit. Does

very well as long as the scatter doesn't reach the average interpoint
spacing of x2,y2 (0.045 in this example - at which point, the problem
is no longer very well-defined).

Tests:

scatter=0.005:

Input offsets: 0.349760 -0.151510
Measured offsets: 0.349591 -0.152183
Delta/scatter: 0.0338316 0.134644

scatter=0.01:

Input offsets: 0.349760 -0.151510
Measured offsets: 0.350363 -0.151164
Delta/scatter: 0.0603169 0.0345916

scatter=0.02:

Input offsets: 0.349760 -0.151510
Measured offsets: 0.341009 -0.149584
Delta/scatter: 0.437570 0.0963129

scatter=0.03:

% CURVEFIT: Failed to converge- CHISQ increasing without bound.
% CURVEFIT: Failed to converge- CHISQ increasing without bound.
Input offsets: 0.349760 -0.151510

Measured offsets: 0.342206 -0.185512

Delta/scatter: 0.251811 1.13339

scatter=0.05:

Page 10 of 16 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

% CURVEFIT: Failed to converge- CHISQ increasing without bound.
Input offsets: 0.349760 -0.151510

Measured offsets: -0.101709 -0.336232

Delta/scatter: 9.02937 3.69445

Code:

seed=43|
nl =100l
n2 = 500l

offset = [0.34976, -0.15151]
scatter = 0.01
subset = floor(randomu(seed,n1)*n2)

x2 = randomu(seed,n2)
y2 = randomu(seed,n2)
x1 = x2[subset] + offset[0] + scatter*randomn(seed,nl)
y1l = y2[subset] + offset[1] + scatter*randomn(seed,n1)

bin = scatter

xrange = minmax([x1,x2])
xrange[0] -= bin & xrange[1] += bin
yrange = minmax([y1,y2])
yrange[0] -= bin & yrange[1] += bin

imagel = hist_2d(x1, y1, minl=xrange[0],max1=xrange[1],bin1=bin, $
min2=yrange[0],max2=yrange[1],bin2=bin)

image2 = hist_2d(x2, y2, minl=xrange[0],max1=xrange[1],bin1=bin, $
min2=yrange[0],max2=yrange[1],bin2=bin)

imagesize = size(imagel,/dimen)

; cross-correlation via convolution theorem

xcor = fft(/inverse, fft(imagel)*fft(image2,/inverse))
maxcor = max(abs(xcor),loc)

maxindex = array_indices(imagel,loc)

; to fit gaussian, need to take periodicity into account

axcor = abs([[xcor,xcor,xcor],[xcor,xcor,xcor],[xcor,xcor,xcor]])

boxlen=7 ; size of box around peak which to fit

halfbox=boxlen/2

; put into middle image of 3x3

maxindex_periodic = maxindex + imagesize

aa = axcor[maxindex[0]-halfbox:maxindex[0]+halfbox, $
maxindex[1]-halfbox:maxindex[1]+halfbox]

; 2D gaussian fit of boxed region

Page 11 of 16 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

params = [0.,max(aa),1.,1.,halfbox,halfbox,0.]

yfit = gauss2dfit(aa, params)

; put back into original coordinates

refinedindex = paramsJ[4:5]-halfbox+maxindex

; deal with periodicity

for i=0,1 do if refinedindex]i] gt imagesize[i]/2 then $
refinedindex]i] -= imagesize[i]

measuredoffset = refinedindex * bin

print, 'Input offsets:’,offset
print, '‘Measured offsets:’,measuredoffset
print, 'Delta/scatter:',abs(measuredoffset-offset)/scatter

Ip.multi=[0,2,1]

red=fsc_color('red’)

plot, psym=3, xrange=xrange, yrange=yrange, x2, y2, tittle="Original’
oplot, psym=3, x1, y1, color=red

plot, psym=3, xrange=xrange, yrange=yrange, x2, y2, titte="Matched'
oplot, psym=3, x1-measuredoffset[0], y1-measuredoffset[1], color=red

end

-Jeremy.

Subject: Re: x-y offsets
Posted by Gray on Thu, 20 May 2010 15:01:.08 GMT

View Forum Message <> Reply to Message

Jeremy, Craig,

Thanks for the great suggestions! [I've tried both methods, and here
are my comments.

First, some more information about the problem - | wanted to ask it in
as general a way as possible because | think it would be useful for
others to have the answer for this question. However, what | really
want is to find the offset, remove it, and match pairs to use as pins

for poly-warping. As | said above, | couldn't figure out how to find

a good match radius, and removing the offset should shrink the radius
to something manageable. But, Craig's method could work too for
finding my match radius, in which case | wouldn't need to find an
offset at all (in all cases, I'm using MATCH_2D to match sources).

Neither method worked completely - | have a particular data set which
broke both methods, so here's what we have (I can give out the actual

Page 12 of 16 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7013
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30601&goto=70950#msg_70950
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=70950
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

numbers if you like):

IDL> print, minmax(x1), minmax(y1)
2.24139 128.413
291512 122.837

IDL> print, minmax(x2), minmax(y2)
0.949352 127.562
7.84978 127.785

IDL> print, n_elements(x1), n_elements(x2)

82 47

First | tried the cross-correlation/gauss2dfit method. | tweaked the
algorithm very slightly - the change I'm most proud of (which was
completely negligible) was to replace the periodicity for-loop with
the line:

refinedindex -= imagesize * (refinedindex gt imagesize/2)

| did one pass only, using as my coarse binsize my desired match
radius (this seemed intuitive, if someone can think of a better way to
choose a binsize, let me know), and for a number of datasets it worked
beautifully. However, about half the datasets failed to converge for
the gaussian fit. In general this gave reasonable results (I

think...), but for the dataset above the x offset was ~3e12, so |
added a reasonableness check: if the offset x values are all greater
or all less than the x-range (same for y), then use the simple
max_index result. However, the points still didn't match up - there
was still a systematic x offset that caused the matching to fail.
Maybe doing another pass would fix that, but | haven't tried yet.

Then | tried Craig's distance-histogram (or "distogram”, if you will)
suggestion. First problem is that there's no guarantee that the
"preferred"” offset is actually the maximum of the full histogram -

there's a predicable peak around half of the maximum distance between
two points (for these sets, around 75). So, | have to pick a

histogram range, but | don't know what it is likely to be a priori

(which is the whole point of this exercise). However, let's assume

that it's somewhere between a 0 pixel and 20 pixel shift, and then the
distogram max should be the actual offset. With that in mind, there's

a couple things | tried, both of which fail for the same reason.

First was to just use MATCH_2D with that distance as the match radius;
the other was to use reverse_indices to pick out the distance pairs

that fell in that bin, then compute a mean offset. However, both
methods run into the problem of multiple matches. MATCH_2D allows
multiple mapping from x1/y1 onto x2/y2 (though it prevents the

reverse) in the case of a large radius, which this is (~12 for this
dataset), and the reverse_indices method does the same. Even if you
try to discard multiple matches, there's no way to discriminate

between them because there's no guarantee that the minimum distance
match is the right one.

Page 13 of 16 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

All'in all, I think we're close, but no cigar yet. Thoughts?

Subject: Re: x-y offsets
Posted by Jeremy Bailin on Thu, 20 May 2010 19:20:01 GMT

View Forum Message <> Reply to Message

On May 20, 3:01 pm, Gray <grayliketheco...@gmail.com> wrote:

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYV

Jeremy, Craig,

Thanks for the great suggestions! I've tried both methods, and here
are my comments.

First, some more information about the problem - | wanted to ask it in
as general a way as possible because | think it would be useful for
others to have the answer for this question. However, what | really
want is to find the offset, remove it, and match pairs to use as pins

for poly-warping. As | said above, | couldn't figure out how to find

a good match radius, and removing the offset should shrink the radius
to something manageable. But, Craig's method could work too for
finding my match radius, in which case | wouldn't need to find an
offset at all (in all cases, I'm using MATCH_2D to match sources).

Neither method worked completely - | have a particular data set which
broke both methods, so here's what we have (I can give out the actual
numbers if you like):

IDL> print, minmax(x1), minmax(y1)
2.24139 128.413
291512 122.837

IDL> print, minmax(x2), minmax(y2)
0.949352 127.562
7.84978 127.785

IDL> print, n_elements(x1), n_elements(x2)

82 47

First | tried the cross-correlation/gauss2dfit method. | tweaked the
algorithm very slightly - the change I'm most proud of (which was
completely negligible) was to replace the periodicity for-loop with
the line:

refinedindex -= imagesize * (refinedindex gt imagesize/2)

| did one pass only, using as my coarse binsize my desired match
radius (this seemed intuitive, if someone can think of a better way to
choose a binsize, let me know), and for a number of datasets it worked
beautifully. However, about half the datasets failed to converge for
the gaussian fit. In general this gave reasonable results (I

think...), but for the dataset above the x offset was ~3e12, so |

Page 14 of 16 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30601&goto=70949#msg_70949
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=70949
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

added a reasonableness check: if the offset x values are all greater
or all less than the x-range (same for y), then use the simple
max_index result. However, the points still didn't match up - there
was still a systematic x offset that caused the matching to fail.
Maybe doing another pass would fix that, but | haven't tried yet.

VVVVYV

Here's one idea: when the sanity check for the gaussian fit fails,
iterate with a coarser bin size. If you take a look at the abs(xcor)
image for a bunch of different bin sizes, what you'll see is that as
the bin size goes down, the values get noisier, and so the chances
that

there exists an individual unrelated pixel that's higher than the
maximum of the real peak go up. If that happens, the gaussian fit
(which only looks at a 7x7 box around the "peak™) will just fit to
noise and is likely to fail miserably. As you go to coarser bin sizes,
the chances of that go down but so does the precision with which you
can determine the offset.

Then | tried Craig's distance-histogram (or "distogram", if you will)
suggestion. First problem is that there's no guarantee that the
"preferred” offset is actually the maximum of the full histogram -

there's a predicable peak around half of the maximum distance between
two points (for these sets, around 75). So, | have to pick a

histogram range, but | don't know what it is likely to be a priori

(which is the whole point of this exercise). However, let's assume

that it's somewhere between a 0 pixel and 20 pixel shift, and then the
distogram max should be the actual offset. With that in mind, there's

a couple things I tried, both of which fail for the same reason.

First was to just use MATCH_2D with that distance as the match radius;
the other was to use reverse_indices to pick out the distance pairs

that fell in that bin, then compute a mean offset. However, both
methods run into the problem of multiple matches. MATCH_2D allows
multiple mapping from x1/y1 onto x2/y2 (though it prevents the

reverse) in the case of a large radius, which this is (~12 for this
dataset), and the reverse_indices method does the same. Even if you
try to discard multiple matches, there's no way to discriminate

between them because there's no guarantee that the minimum distance
match is the right one.

VVVVVVVVVVVVVYVVVYVYVYVYV

| think once you have a set of plausible distance pairs, it becomes
a minimization problem. How about if, once you have a set of
possible pairs from the "distogram" reverse_indices, you construct
a function that calculates the total distance squared between

all of the pairs and use something like POWELL to minimize it?

-Jeremy.

Page 15 of 16 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: x-y offsets
Posted by Jeremy Bailin on Thu, 20 May 2010 20:11:17 GMT

View Forum Message <> Reply to Message

> | think once you have a set of plausible distance pairs, it becomes
> a minimization problem. How about if, once you have a set of

> possible pairs from the "distogram” reverse_indices, you construct
> a function that calculates the total distance squared between

> all of the pairs and use something like POWELL to minimize it?

To be more specific, | would go with calculating the mean offset
using the reverse_indices to get you close, then use
MATCHALL_2D using the offset coordinates to get neighbours of
each x1,y1 pair. Then you can minimize the following function

for xoff,yoff:

Sum_i (min((x1_i-x2+xoff)*2 + (y1_i-y2+yoff)*2))

where i runs over x1,y1 and the minimization is over all x2,y2
points that are neighbours of x1_i,y1 i.

-Jeremy.

Page 16 of 16 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30601&goto=70948#msg_70948
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=70948
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

