Subject: Re: Quickest method for calculation Posted by Gray on Mon, 24 May 2010 14:39:48 GMT

View Forum Message <> Reply to Message

On May 24, 7:25 am, jaz <jazpear...@gmail.com> wrote: > Due to the size of the simulations i'm running, my programs are > incredibly memory intensive. > > As a result, some of the calculations are taking guite a large amount > of time to compute. Here is an example: > These are the array sizes:-> > top_tem = fltarr(200000,2002) > y.rho = fltarr(200000,2002)> temperature = fltarr(200000,2002) and this is one of the calculations i do, which takes guite a while: top_tem = TEMPORARY(top_tem) + (y.rho^2.0 * temperature) > i use TEMPORARY so that it doesn't eat up much memory. > But, is there a better way to do this calculation? Would it be better to break it up somehow? > Any advice would be great. Well, you can use the += operator, I dunno if that will help. However, instead of squaring, you should do y.rho*y.rho.

Subject: Re: Quickest method for calculation Posted by David Fanning on Mon, 24 May 2010 14:51:31 GMT View Forum Message <> Reply to Message

Gray writes:

> However, instead of squaring, you should do y.rho*y.rho.

Why is that?

Cheers,

David

David Fanning, Ph.D.

Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.dfanning.com/
Sepore ma de ni thue. ("Perhaps thos speakest truth.")

Subject: Re: Quickest method for calculation Posted by Karl[1] on Mon, 24 May 2010 15:58:00 GMT View Forum Message <> Reply to Message

On May 24, 8:51 am, David Fanning <n...@dfanning.com> wrote:

- > Gray writes:
- >> However, instead of squaring, you should do y.rho*y.rho.
- >
- > Why is that?
- >
- > Cheers,
- >
- > David
- >
- > -
- > David Fanning, Ph.D.
- > Fanning Software Consulting, Inc.
- > Coyote's Guide to IDL Programming:http://www.dfanning.com/
- > Sepore ma de ni thue. ("Perhaps thos speakest truth.")

The IDL interpreter is probably going to compute y.rho 2 by calling the pow() function, which is a standard C library function. The pow() function probably uses $\exp(y*ln(x))$ and probably needs to check/handle bad input values for these functions. The pow() function itself may be optimized to spot the easy multiply or use some other faster calculation, but that is going to vary from platform to platform. In any case, is is easy to see that a single multiply is better at this point.

Also, there may be some float -> double and double -> float conversions going on, which are going to strain memory and CPU even further. The pow() function takes double arguments and returns double.

IDL has always been a "do what I say" language, and so it would probably expect you to write y.rho * y.rho instead of doing this optimization for you, which it could. But I'd guess that it doesn't in this case.

Minimizing memory access would be the other thing to look at. If you go with the multiply, you are going to read the y.rho array once to compute its square and then store the result in a temp. Then you will read the temp back again when multiplying it by the temp. You end up

looping through some of the data twice. This is not the optimum cache behavior.

If it was Really Important for this to run fast, I would consider writing the function calculation in C so that I end up making only one pass through all the data:

```
for (i=0; i<n; i++)
top_tem[i] += y.rho[i] * y.rho[i] * temperature[i]
```

There are a lot of docs and examples for coding functions in C that you can call from IDL, so this is not very hard to do and may be worth doing just to see how much faster it is.

If your compiler is really good, you may be able to turn on an option that generates SSE code, which may give you another 2x to 3x. The above pattern is an easy one for the compiler to recognize as SIMD-exploitable. If the compiler doesn't do this for you and you have the time, you can write the SSE code yourself.

But yeah, using the multiply instead of the ^ will have the most ROI.

Karl

Subject: Re: Quickest method for calculation Posted by David Fanning on Mon, 24 May 2010 16:12:40 GMT View Forum Message <> Reply to Message

Karl writes:

> But yeah, using the multiply instead of the ^ will have the most ROI.

Wow. Thanks Karl! Bottom line: we would all be better off if we were *computer* scientists rather than, well, whatever the hell we are. :-)

Cheers,

David

David Fanning, Ph.D.

Fanning Software Consulting, Inc.

Coyote's Guide to IDL Programming: http://www.dfanning.com/

Sepore ma de ni thue. ("Perhaps thos speakest truth.")

Subject: Re: Quickest method for calculation Posted by Foldy Lajos on Mon, 24 May 2010 19:10:17 GMT

View Forum Message <> Reply to Message

On Mon, 24 May 2010, Karl wrote:

- > If your compiler is really good, you may be able to turn on an option
- > that generates SSE code, which may give you another 2x to 3x. The
- > above pattern is an easy one for the compiler to recognize as SIMD-
- > exploitable. If the compiler doesn't do this for you and you have the
- > time, you can write the SSE code yourself.

I think this will have no effect. The bottleneck is memory access, the CPU is already starving on data.

regards, lajos

Subject: Re: Quickest method for calculation Posted by Karl[1] on Mon, 24 May 2010 19:28:45 GMT

View Forum Message <> Reply to Message

On May 24, 1:10 pm, FÖLDY Lajos <fo...@rmki.kfki.hu> wrote:

- > On Mon, 24 May 2010, Karl wrote:
- >> If your compiler is really good, you may be able to turn on an option
- >> that generates SSE code, which may give you another 2x to 3x. The
- >> above pattern is an easy one for the compiler to recognize as SIMD-
- >> exploitable. If the compiler doesn't do this for you and you have the
- >> time, you can write the SSE code yourself.
- >
- > I think this will have no effect. The bottleneck is memory access, the CPU
- > is already starving on data.
- >
- > regards,
- > lajos

Yeah, you are probably right. I did some measurements along these lines awhile ago and had the same conclusion. It would only help if the ratio of operations to memory accesses were a lot greater.

Subject: Re: Quickest method for calculation Posted by David Fanning on Mon, 24 May 2010 19:37:21 GMT View Forum Message <> Reply to Message

Karl writes:

- > Yeah, you are probably right. I did some measurements along these
- > lines awhile ago and had the same conclusion. It would only help if
- > the ratio of operations to memory accesses were a lot greater.

Whew! Thanks.

I'll replace CS450 with BD565 (Birding in the Rocky Mountains) in my summer curriculum. :-)

Cheers,

David

--

David Fanning, Ph.D.
Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.dfanning.com/
Sepore ma de ni thue. ("Perhaps thos speakest truth.")

Subject: Re: Quickest method for calculation Posted by jaz on Tue, 25 May 2010 22:53:11 GMT View Forum Message <> Reply to Message

Thanks guys, I'll try and replace the ^, as suggested. It might not make any difference, but then again, it might be a tad quicker. I'd cut my simulation down from 100 hours to 30 hours thus far through "small" suggestions a bit like this.