Subject: Object within an Object's Structure
Posted by carl on Wed, 09 Jun 2010 19:12:17 GMT

View Forum Message <> Reply to Message

Hello,

| am trying to make use of what OOP functionality IDL has, and | wish
to have as an object variable another object of a different type.

Is this possible? If so, how do | specify this?

| have an object type orbitingBody, and want to make an object
orbitingPair. Would this work? how would it be then coded in my init
function?

pro orbitingpair__define
struct = { orbitingPair,
planet: obj_new(‘orbitingbody’, args)
star: obj_new(‘orbitingbody', args)
etc...}
end

thanks,

Carl

Subject: Re: Object within an Object's Structure
Posted by Paul VVan Delst[1] on Thu, 10 Jun 2010 22:00:59 GMT

View Forum Message <> Reply to Message

carl wrote:
Hello,

| am trying to make use of what OOP functionality IDL has, and | wish
to have as an object variable another object of a different type.

Is this possible? If so, how do | specify this?

| have an object type orbitingBody, and want to make an object
orbitingPair. Would this work? how would it be then coded in my init
function?

pro orbitingpair__define
struct = { orbitingPair,
planet: obj_new(‘orbitingbody’, args)
star: obj_new(‘orbitingbody', args)
etc...}

VVVVVVVVVYVYVYVYVYVYVYV

Page 1 of 4 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7119
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30732&goto=71281#msg_71281
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=71281
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30732&goto=71367#msg_71367
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=71367
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> end

Hmm. Why restrict yourself to only planetary and star orbiting bodies? (e.g. asteroids?
comets?) Or even just two?

Assuming your "orbitingbody" object definition contains property information about the
type of orbiting body (i.e. planet, star, moon, asteroid, comet, etc), why not something like:

pro orbitingSet__define
void = { orbitingSet,
n_bodies = 0L, $
; Container for orbiting bodies
INHERITS IDL_Container }
end

?
You can then add as many orbiting bodies as you like:
pro orbitingSet::Add, $
obj, $; Object to add
_REF_EXTRA = Extra ; Keywords passed onto IDL_Container::Add

; Add object to the container
self->IDL_Container::Add, obj, EXTRA = Extra

; If the object added is an orbitingBody object, increment the counter
IF (OBJ_ISA(obj, 'orbitingBody')) THEN self.n_bodies++
end

This way you can store more information in your "orbitingSet" container if the need ever
arises... and the objects you add needn't be just orbitingBody objects either.

cheers,

paulv

Subject: Re: Object within an Object's Structure
Posted by Paul Van Delst[1] on Thu, 10 Jun 2010 22:22:54 GMT

View Forum Message <> Reply to Message

Paul van Delst wrote:

>

> carl wrote:

>> Hello,

>>

>> | am trying to make use of what OOP functionality IDL has, and | wish

Page 2 of 4 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=30732&goto=71366#msg_71366
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=71366
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> to have as an object variable another object of a different type.

>> |s this possible? If so, how do | specify this?

>> | have an object type orbitingBody, and want to make an object

>> orbitingPair. Would this work? how would it be then coded in my init

>> function?

>> pro orbitingpair__define
>> struct = { orbitingPair,

>> planet: obj_new('orbitingbody', args)
>> star: obj_new('orbitingbody’, args)
>> etc...}

>> end

Hmm. Why restrict yourself to only planetary and star orbiting bodies? (e.g. asteroids?
comets?) Or even just two?

Assuming your "orbitingbody" object definition contains property information about the
type of orbiting body (i.e. planet, star, moon, asteroid, comet, etc), why not something like:

pro orbitingSet__define
void = { orbitingSet,
n_bodies = 0L, $
; Container for orbiting bodies
INHERITS IDL_Container }
end

?
You can then add as many orbiting bodies as you like:

pro orbitingSet::Add, $
obj, $; Object to add
_REF_EXTRA = Extra ; Keywords passed onto IDL_Container::Add

; Add object to the container
self->IDL_Container::Add, obj, EXTRA = Extra

; If the object added is an orbitingBody object, increment the counter
IF (OBJ_ISA(0bj, '‘orbitingBody')) THEN self.n_bodies++
end

This way you can store more information in your "orbitingSet" container if the need ever
arises... and the objects you add needn't be just orbitingBody objects either.

VVVVVVVVVVVVVVVVVVVVVVVVYVVYVYVYVYVYV

| forgot to add a proposed get function

Page 3 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

function orbitingSet::Get, $
_REF_EXTRA = Extra ; Keywords passed onto IDL_Container::Get

; Get the requested object reference
objref = self->IDL_Container::Get(_ EXTRA = Extra)

RETURN, objref
end
(I can't recall if the _REF_EXTRA keyword just needs to be an _EXTRA or not....)

Via the IDL_Container::Get keywords, for an orbitingSet object (let's call it oSet), you
can do things like:

obj = 0Set->Get(ISA="orbitingBody', COUNT=n)
if(NnEQO)then$
message, 'No orbiting bodies in set!

You can then fancy the internals up a bit so you can return particular types of orbiting
bodies too.

Anyway....
cheers,

paulv

Page 4 of 4 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

