Subject: Re: time series analysis - request for ideas? Posted by R.G. Stockwell on Tue, 21 Sep 2010 16:35:59 GMT

View Forum Message <> Reply to Message

"a" <oxfordenergyservices@googlemail.com> wrote in message news:da83c4e7-1249-4a7e-8138-90bce4e37df0@I17g2000vbf.google groups.com...

Hi

- > I have a number of experimental time-series data (say 100) each of
- > which consists of a number of readings at 10 second intervals for a
- > year.

- > I want to simulate many thousand of these time-series but they must
- agree statistically with the experimental data.

- Does anybody have any ideas of how this might be done or the types of
- fields that this problem has come up in?
- >
- My initial thoughts were >

>

- > a) the distribution of values of the simulated must agree with
- > experimental
- > b) the distribution of (the change in each 10 seconds) must agree with
- > experimental
- > c) the autocorrelations of the simulation must agree with experimental

>

- > The experimental data does not look like it can be used with fourier
- > analysis there are lots of spikes, lots of plateaus and lots of very
- > low contiguous values etc.

>

Any ideas appreciated

>

Cheers!

> Russ

I would fit to find what kind of autoregressive process it appears to be. Check out the power spectrum, and if it is a red spectrum (which is fairly universal

in geophysics) just create an autoregressive process to mimic the spectral slope.

(I.e create a time series from random white data, make an recursive filter to tune

the spectra to look like the real thing).

for example: (you can put in your own alpha, or change how many lags you

```
want)
function rednoise,len
; rewrite to calc all random numbers at once.
randomnumbers = randomn(seed, len)

alpha = 0.99d; the one-lag autocorrelation of the red noise

factor = sqrt(1-alpha^2)
x = dblarr(len)
x(0) = factor*randomnumbers[0];
for i=1L,len-1 do begin
x(i)=x(i-1)*alpha + factor*randomnumbers[i];
endfor
return,x
```

Subject: Re: time series analysis - request for ideas?
Posted by oxfordenergyservices on Fri, 24 Sep 2010 13:02:39 GMT
View Forum Message <> Reply to Message

```
On 21 Sep, 17:35, "R.G. Stockwell" <noem...@please.com> wrote:

> "a" <oxfordenergyservi...@googlemail.com> wrote in message

> news:da83c4e7-1249-4a7e-8138-90bce4e37df0@l17g2000vbf.google groups.com...

> 
> 
> 
> 
Hi

> 
> I have a number of experimental time-series data (say 100) each of which consists of a number of readings at 10 second intervals for a 
>  year.

> 
I want to simulate many thousand of these time-series but they must 
agree statistically with the experimental data.

> Does anybody have any ideas of how this might be done or the types of 
>  fields that this problem has come up in?
```

end

```
>> My initial thoughts were
>> a) the distribution of values of the simulated must agree with
>> experimental
>> b) the distribution of (the change in each 10 seconds) must agree with
>> experimental
>> c) the autocorrelations of the simulation must agree with experimental
>> The experimental data does not look like it can be used with fourier
>> analysis - there are lots of spikes, lots of plateaus and lots of very
>> low contiguous values etc.
>
  Any ideas appreciated
>> Cheers!
>> Russ
> I would fit to find what kind of autoregressive process it appears to be.
> Check out the power spectrum, and if it is a red spectrum (which is fairly
> universal
> in geophysics) just create an autoregressive process to mimic the spectral
> slope.
>
> (I.e create a time series from random white data, make an recursive filter
> to tune
> the spectra to look like the real thing).
>
> for example: (you can put in your own alpha, or change how many lags you
> want)
>
 function rednoise,len
  ; rewrite to calc all random numbers at once.
>
  randomnumbers = randomn(seed, len)
>
>
  alpha = 0.99d; the one-lag autocorrelation of the red noise
>
> factor = sqrt(1-alpha^2)
> x = dblarr(len)
> x(0) = factor*randomnumbers[0]:
> for i=1L,len-1 do begin
       x(i)=x(i-1)*alpha + factor*randomnumbers[i];
> endfor
> return,x
```

>

> end

Thanks RG

I'll take a look. One of the issues I have with the datasets is that they do not really resemble noise, white or red. There a periods of quietness, then periods of plateaus etc. Quite hard to model.

Thanks

Russ

Subject: Re: time series analysis - request for ideas?
Posted by Kenneth P. Bowman on Fri, 24 Sep 2010 14:58:10 GMT
View Forum Message <> Reply to Message

In article

<d6ff2568-ef07-4ccb-bbcf-13ea297e1177@n7g2000vbo.googlegroups.com>, a <oxfordenergyservices@googlemail.com> wrote:

- > I'll take a look. One of the issues I have with the datasets is that
- > they do not really resemble noise, white or red. There a periods of
- > quietness, then periods of plateaus etc. Quite hard to model.

You might need a hierarchical model. That is, a top-level random process that flips between different the modes of variability, and multiple low-level processes that simulate the statistics within each quasi-stationary period.

Ken Bowman

>

Subject: Re: time series analysis - request for ideas?
Posted by oxfordenergyservices on Fri, 01 Oct 2010 15:33:24 GMT
View Forum Message <> Reply to Message

On 24 Sep, 15:58, "Kenneth P. Bowman" <k-bow...@null.edu> wrote:

> In article

> < d6ff2568-ef07-4ccb-bbcf-13ea297e1...@n7g2000vbo.googlegroups .com >,

> a <oxfordenergyservi...@googlemail.com> wrote:

>> I'll take a look. One of the issues I have with the datasets is that

>> they do not really resemble noise, white or red. There a periods of

>> quietness, then periods of plateaus etc. Quite hard to model.

- > You might need a hierarchical model. That is, a top-level random
- > process that flips between different the modes of variability, and multiple
- > low-level processes that simulate the statistics within each
- > quasi-stationary period.

i think that's right. what i've tried so far makes simulations that have the correct power spectrum but have effectively shuffled the time signals so it doesn't look like the original.

i think i have to simulate activity or not and then introduce the noise after.

thanks