Subject: Rebin/Reform/Histogram Posted by Mrunmayee on Tue, 21 Sep 2010 12:01:01 GMT View Forum Message <> Reply to Message

- 1. I have 2 vectors t2 and t2 of size nv each.
- 2. I have 2 matrices, w1 and w2, of sizes nvxn1 and nvxn2 resp. (Following IDL notation so nv cols and n1/n2 rows).
- 3. I need to take each row of w1, multiply (element-wise) to each row of w2. So effectively I have n1*n2 number of multipled rows.
- 4. Each of these rows needs to be matrix-multiplied by (t1-t2)^2. So that I want to end up with n1xn2 matrix (say SF).
- 5. Independently I have another n1xn2 matrix of distances (D). I need above matrix as a function of distances from distance matrix. That is, SF[i,j] is value at D[i,j]. I want D histogrammed, put SF in the same bins by using reverse_indices and get average value of SF corresponding to each distance bin.
- 6. Then I need to repeat the process for a total of 524 t's pair-wise. So above t1, t2 are chosen at random from 524 t's just to start the problem. For each of these, n1/n2 can vary from ~100 to ~1500.

```
So far:

SF = FltArr(n1,n2)

dt = (t1-t2)^2

for i = 0, n1-1 do begin

w = rebin(w[*,i], nv, n2); Makes nvxn2 matrix
p = w*w2 ; Performs number 3 above.

SF[i,*] = dt # p
endfor

Improvization (?):
temp = reform(w1, nv, 1, n1); Copies each row on separate planes.
w1_3d = rebin(temp, nv, n2, n1)
```

But I am not aware how I can use this (trying to eliminate the for loop, you see) for the step calculating 'p' and hence SF.

So questions:

- 1. Is there a way I can eliminate the for loop? I am not THAT averse to them anyway. But I would like to know anyway.
- 2. How can I scale the problem to 524*523/2 number of pairs of t's?

I tried to be consise and explanative at the same time, so do ask me if I have goofed up.

Thanks.

(And for someone who is using IDL for, like n years, I am resorting to rebin/reform/histogram only NOW. So to get to this for loop, it took me 3 weeks. I don't think my collaborator is very happy with that... I just think I have casted my solutions in IDL mould and they are nice. I would go in details of the physics/statistics behind it, but maybe later.. Let's at least get the ball rolling.)

Thanks.