
Subject: Accelerating a one-line program doing matrix multiplication
Posted by on Mon, 27 Sep 2010 09:18:43 GMT
View Forum Message <> Reply to Message

Hi all,

I wrote a one-line function to convert a list of points from "voxel
coordinates" (image coordinates) to "real coordinates" (physical
coordinates):

;input: the points "vc", the spatial origin of an image v0 and its x,
y, and z orientation vectors (v1,v2,v3).
FUNCTION vc2rc, v0,v1,v2,v3,vc
	RETURN, [[v1],[v2],[v3]] # vc + REBIN(v0, SIZE(vc, /DIMENSIONS))
END

For example, I give the image coordinate [8,1,0] and I want as output
something like [34.25, 4.12, 0], indicating the location of this voxel
in space. And the same thing but, instead of having one input point,
having several millions.

The function looks simple to me and it works great. BUT, for large
images (e.g. 500x500x200 voxels), it is terribly slow and uses way too
much memory... Am I doing something wrong, could I save speed
somewhere? I guess there should be some way to accelerate it, but I am
not able to see how...

I also have the opposite function, in my opinion also too slow (though
faster than the other)...

FUNCTION rc2vc_round, v0,v1,v2,v3,rc
	RETURN, ROUND((rc - REBIN(v0, SIZE(rc, /DIMENSIONS))) ## INVERT([[v1],
[v2],[v3]]))
END

I would be really grateful for any clue!

Subject: Re: Accelerating a one-line program doing matrix multiplication
Posted by on Wed, 29 Sep 2010 15:24:23 GMT
View Forum Message <> Reply to Message

On Sep 29, 4:49 pm, chris <rog...@googlemail.com> wrote:
> On 29 Sep., 12:48, Axel M <axe...@gmail.com> wrote:
>
>> I have to admit that I did not understand this proposed use of
>> REPLICATE:
>

Page 1 of 20 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7131
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31319&goto=72696#msg_72696
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=72696
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7131
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31319&goto=72757#msg_72757
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=72757
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>> sometimes (replicate({temp:input},newsize)).(0) is faster then rebin
>
>> But it brought me a related question in mind: does IDL have a
>> "REPLICATE" function for vectors instead of scalar values? I am using
>> REBIN, but REBIN is thought for more advanced uses and probably
>> suboptimal for a "replicate-like" use... right?
>
> Yes, it has as I mentioned uncommented above:
>
> sometimes (replicate({temp:input},newsize)).(0) is faster then rebin
>
> -> this means:
>
> IDL> a=findgen(3)
> IDL> print,a
> 0.000000 1.00000 2.00000
> IDL> print, rebin(a,3,5)
> 0.000000 1.00000 2.00000
> 0.000000 1.00000 2.00000
> 0.000000 1.00000 2.00000
> 0.000000 1.00000 2.00000
> 0.000000 1.00000 2.00000
> IDL> print, (replicate({temp:a},5)).(0)
> 0.000000 1.00000 2.00000
> 0.000000 1.00000 2.00000
> 0.000000 1.00000 2.00000
> 0.000000 1.00000 2.00000
> 0.000000 1.00000 2.00000
>
> Regards
>
> CR

Thanks!!

Great, I did not know about this construction, and honestly I do not
understand how it works (is there any documentation about it?).
Anyways, I tried it, and unfortunately I saw that it needed ~20%
longer (the complete function, not the rebin only). So, it is not
faster.. but it is great though.

Subject: Re: Accelerating a one-line program doing matrix multiplication
Posted by pgrigis on Wed, 29 Sep 2010 15:34:29 GMT
View Forum Message <> Reply to Message

>
> [skip]

Page 2 of 20 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6214
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31319&goto=72756#msg_72756
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=72756
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> sometimes (replicate({temp:input},newsize)).(0) is faster then rebin
>
> -> this means:
>
> IDL> a=findgen(3)
> IDL> print,a
> 0.000000 1.00000 2.00000
> IDL> print, rebin(a,3,5)
> 0.000000 1.00000 2.00000
> 0.000000 1.00000 2.00000
> 0.000000 1.00000 2.00000
> 0.000000 1.00000 2.00000
> 0.000000 1.00000 2.00000
> IDL> print, (replicate({temp:a},5)).(0)
> 0.000000 1.00000 2.00000
> 0.000000 1.00000 2.00000
> 0.000000 1.00000 2.00000
> 0.000000 1.00000 2.00000
> 0.000000 1.00000 2.00000
>
> Regards
>
> CR

Another option is:
a#(fltarr(5)+1)

But I would expect this to be slower...

Ciao,
Paolo

Subject: Re: Accelerating a one-line program doing matrix multiplication
Posted by penteado on Wed, 29 Sep 2010 15:45:56 GMT
View Forum Message <> Reply to Message

On Sep 29, 12:24 pm, Axel M <axe...@gmail.com> wrote:
> Great, I did not know about this construction, and honestly I do not
> understand how it works (is there any documentation about it?).
> Anyways, I tried it, and unfortunately I saw that it needed ~20%
> longer (the complete function, not the rebin only). So, it is not
> faster.. but it is great though.

It is replicating a structure of a single field which contains the
array input ({temp:input}), then selecting only a single field (the

Page 3 of 20 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31319&goto=72755#msg_72755
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=72755
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

first, 0) of the resulting structure array. Documentation for this
would be on creation and use of structures.

Subject: Re: Accelerating a one-line program doing matrix multiplication
Posted by on Wed, 29 Sep 2010 15:55:33 GMT
View Forum Message <> Reply to Message

On 29 Sep., 17:45, Paulo Penteado <pp.pente...@gmail.com> wrote:
> On Sep 29, 12:24 pm, Axel M <axe...@gmail.com> wrote:
>
>> Great, I did not know about this construction, and honestly I do not
>> understand how it works (is there any documentation about it?).
>> Anyways, I tried it, and unfortunately I saw that it needed ~20%
>> longer (the complete function, not the rebin only). So, it is not
>> faster.. but it is great though.
>
> It is replicating a structure of a single field which contains the
> array input ({temp:input}), then selecting only a single field (the
> first, 0) of the resulting structure array. Documentation for this
> would be on creation and use of structures.

Ok, I got it. Thanks! Then probably it is the memory allocation for
the array of structures which takes so long... it would be great if
the ITT people would develop a _fast_ vector replicate, I fear
rebinning is not the best option.

In any case, based on the answers, I assume that my problem is rather
on the matrix multiplication part, so I can probably do nothing for
that.

Thanks a lot

Subject: Re: Accelerating a one-line program doing matrix multiplication
Posted by pgrigis on Wed, 29 Sep 2010 16:05:58 GMT
View Forum Message <> Reply to Message

On Sep 29, 11:55 am, Axel M <axe...@gmail.com> wrote:
> On 29 Sep., 17:45, Paulo Penteado <pp.pente...@gmail.com> wrote:
>
>> On Sep 29, 12:24 pm, Axel M <axe...@gmail.com> wrote:
>
>>> Great, I did not know about this construction, and honestly I do not
>>> understand how it works (is there any documentation about it?).
>>> Anyways, I tried it, and unfortunately I saw that it needed ~20%
>>> longer (the complete function, not the rebin only). So, it is not

Page 4 of 20 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7131
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31319&goto=72754#msg_72754
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=72754
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6214
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31319&goto=72753#msg_72753
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=72753
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>> faster.. but it is great though.
>
>> It is replicating a structure of a single field which contains the
>> array input ({temp:input}), then selecting only a single field (the
>> first, 0) of the resulting structure array. Documentation for this
>> would be on creation and use of structures.
>
> Ok, I got it. Thanks! Then probably it is the memory allocation for
> the array of structures which takes so long... it would be great if
> the ITT people would develop a _fast_ vector replicate, I fear
> rebinning is not the best option.
>
> In any case, based on the answers, I assume that my problem is rather
> on the matrix multiplication part, so I can probably do nothing for
> that.
>
> Thanks a lot

well considering your original problem - you need to apply
a linear transformation to N vectors v_i=(x_i,y_i,z_i),
for i going from 0 to a large N, right?

I would just explicitely compute the transformed vectors

z_i=(xx_i,yy_i,zz_i)

by just writing out in the program the computation for every
component,
i.e.

xx=x*c1+y*c2+z*c3+c4
and same for yy,zz with appropriate constant coefficients c1,c2,c3,c4
(that are the same for all i).

But then maybe i misunderstood the problem...

Ciao,
Paolo

Subject: Re: Accelerating a one-line program doing matrix multiplication
Posted by Karl[1] on Wed, 29 Sep 2010 16:57:05 GMT
View Forum Message <> Reply to Message

On Sep 29, 10:05 am, Paolo <pgri...@gmail.com> wrote:
> On Sep 29, 11:55 am, Axel M <axe...@gmail.com> wrote:
>

Page 5 of 20 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5533
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31319&goto=72752#msg_72752
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=72752
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>
>> On 29 Sep., 17:45, Paulo Penteado <pp.pente...@gmail.com> wrote:
>
>>> On Sep 29, 12:24 pm, Axel M <axe...@gmail.com> wrote:
>
>>>> Great, I did not know about this construction, and honestly I do not
>>>> understand how it works (is there any documentation about it?).
>>>> Anyways, I tried it, and unfortunately I saw that it needed ~20%
>>>> longer (the complete function, not the rebin only). So, it is not
>>>> faster.. but it is great though.
>
>>> It is replicating a structure of a single field which contains the
>>> array input ({temp:input}), then selecting only a single field (the
>>> first, 0) of the resulting structure array. Documentation for this
>>> would be on creation and use of structures.
>
>> Ok, I got it. Thanks! Then probably it is the memory allocation for
>> the array of structures which takes so long... it would be great if
>> the ITT people would develop a _fast_ vector replicate, I fear
>> rebinning is not the best option.
>
>> In any case, based on the answers, I assume that my problem is rather
>> on the matrix multiplication part, so I can probably do nothing for
>> that.
>
>> Thanks a lot
>
> well considering your original problem - you need to apply
> a linear transformation to N vectors v_i=(x_i,y_i,z_i),
> for i going from 0 to a large N, right?
>
> I would just explicitely compute the transformed vectors
>
> z_i=(xx_i,yy_i,zz_i)
>
> by just writing out in the program the computation for every
> component,
> i.e.
>
> xx=x*c1+y*c2+z*c3+c4
> and same for yy,zz with appropriate constant coefficients c1,c2,c3,c4
> (that are the same for all i).
>
> But then maybe i misunderstood the problem...
>
> Ciao,
> Paolo

Page 6 of 20 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Yeah, I think you are right.

Another way to see it:

FUNCTION vc2rc, v0,v1,v2,v3,vc
 xform = [[v1],[v2],[v3]]
 n = <number of points in vc>
 for i=0, n-1
 temp = vc[*,i]
 temp = temp # xform + v0
 vc[*,i] = temp
 end
END

This assumes that you can change vc itself and that v0 is a 3-vector.
In this case, there is only one copy of the point array, as it is
being transformed in place. In other schemes, there may have been as
many as three or four copies. If it is not OK to change vc, then this
function would have to make a vr array of the same shape as vc and
return it. But it is still the best solution as far as memory goes.

Yeah, the for loop is going to be slow, but a test will tell if it is
faster than other approaches. If the program causes paging to disk
with the original approach, then the for loop may be faster. If speed
is really, really important, then the above can be implemented in a C
DLM.

And yes, the three lines with "temp" can be collapsed into one, but
IDL will make small temps anyway here and so a single line may not be
much faster. I left it as three lines for clarity.

Subject: Re: Accelerating a one-line program doing matrix multiplication
Posted by on Thu, 30 Sep 2010 08:39:59 GMT
View Forum Message <> Reply to Message

On Sep 29, 6:57 pm, Karl <karl.w.schu...@gmail.com> wrote:
> On Sep 29, 10:05 am, Paolo <pgri...@gmail.com> wrote:
>
>
>
>> On Sep 29, 11:55 am, Axel M <axe...@gmail.com> wrote:
>
>>> On 29 Sep., 17:45, Paulo Penteado <pp.pente...@gmail.com> wrote:
>
>>>> On Sep 29, 12:24 pm, Axel M <axe...@gmail.com> wrote:
>

Page 7 of 20 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7131
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31319&goto=72749#msg_72749
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=72749
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>> > Great, I did not know about this construction, and honestly I do not
>>>> > understand how it works (is there any documentation about it?).
>>>> > Anyways, I tried it, and unfortunately I saw that it needed ~20%
>>>> > longer (the complete function, not the rebin only). So, it is not
>>>> > faster.. but it is great though.
>
>>>> It is replicating a structure of a single field which contains the
>>>> array input ({temp:input}), then selecting only a single field (the
>>>> first, 0) of the resulting structure array. Documentation for this
>>>> would be on creation and use of structures.
>
>>> Ok, I got it. Thanks! Then probably it is the memory allocation for
>>> the array of structures which takes so long... it would be great if
>>> the ITT people would develop a _fast_ vector replicate, I fear
>>> rebinning is not the best option.
>
>>> In any case, based on the answers, I assume that my problem is rather
>>> on the matrix multiplication part, so I can probably do nothing for
>>> that.
>
>>> Thanks a lot
>
>> well considering your original problem - you need to apply
>> a linear transformation to N vectors v_i=(x_i,y_i,z_i),
>> for i going from 0 to a large N, right?
>
>> I would just explicitely compute the transformed vectors
>
>> z_i=(xx_i,yy_i,zz_i)
>
>> by just writing out in the program the computation for every
>> component,
>> i.e.
>
>> xx=x*c1+y*c2+z*c3+c4
>> and same for yy,zz with appropriate constant coefficients c1,c2,c3,c4
>> (that are the same for all i).
>
>> But then maybe i misunderstood the problem...
>
>> Ciao,
>> Paolo
>
> Yeah, I think you are right.
>
> Another way to see it:
>
> FUNCTION vc2rc, v0,v1,v2,v3,vc

Page 8 of 20 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> xform = [[v1],[v2],[v3]]
> n = <number of points in vc>
> for i=0, n-1
> temp = vc[*,i]
> temp = temp # xform + v0
> vc[*,i] = temp
> end
> END
>
> This assumes that you can change vc itself and that v0 is a 3-vector.
> In this case, there is only one copy of the point array, as it is
> being transformed in place. In other schemes, there may have been as
> many as three or four copies. If it is not OK to change vc, then this
> function would have to make a vr array of the same shape as vc and
> return it. But it is still the best solution as far as memory goes.
>
> Yeah, the for loop is going to be slow, but a test will tell if it is
> faster than other approaches. If the program causes paging to disk
> with the original approach, then the for loop may be faster. If speed
> is really, really important, then the above can be implemented in a C
> DLM.
>
> And yes, the three lines with "temp" can be collapsed into one, but
> IDL will make small temps anyway here and so a single line may not be
> much faster. I left it as three lines for clarity.

Hi,

Thanks for the idea. I tried it, below is the function code (original
and "accelerated" with your idea) and the test code. By explicitly
applying the linear transformation (_accel version) within a loop it
took 15 times longer... I guess IDL does this better with the #
operator.

I still think I can most definitely gain time by using the fact that
vc represents just all indexes of an array, but I have to find out how
to exploit this property...

FUNCTION vc2rc, v0,v1,v2,v3,vc
	RETURN, [[v1],[v2],[v3]] # vc + REBIN(v0, SIZE(vc, /DIMENSIONS))
END

FUNCTION vc2rc_accel, v0,v1,v2,v3,vc
	npoints = (SIZE(vc, /DIMENSIONS))[1]
	for i=0L, npoints-1 DO BEGIN
		vc[*,i] = vc[0,i] * v1 + vc[1,i] * v2 + vc[2,i] * v3 + v0
	endfor
	RETURN, vc

Page 9 of 20 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

END

PRO testspeed
	dims = [100,100,100]
 i = LINDGEN(LONG(dims[0])*dims[1]*dims[2]) ;image dimensions
 vc = TRANSPOSE([[(i MOD dims[0])], [((i / dims[0]) MOD
(dims[1]))], [(i / (dims[0] * dims[1]))]])
	v0=[5,5,5] ;origin
	v1=[1.0,0,0] ;vectors
	v2=[0,1.0,0]
	v3=[0,0,2.0]

	t0 =SYSTIME(/SECONDS)
	rc = vc2rc_accel(v0,v1,v2,v3,vc)
	rc = 0 & vc = TRANSPOSE([[(i MOD dims[0])], [((i / dims[0]) MOD
(dims[1]))], [(i / (dims[0] * dims[1]))]])
	rc = vc2rc_accel(v0,v1,v2,v3,vc)
	print, 'Time: ', STRING(SYSTIME(/SECONDS) - t0)

	rc = 0 & vc = TRANSPOSE([[(i MOD dims[0])], [((i / dims[0]) MOD
(dims[1]))], [(i / (dims[0] * dims[1]))]])

	t0 =SYSTIME(/SECONDS)
	rc = vc2rc(v0,v1,v2,v3,vc)
	rc = 0 & vc = TRANSPOSE([[(i MOD dims[0])], [((i / dims[0]) MOD
(dims[1]))], [(i / (dims[0] * dims[1]))]])
	rc = vc2rc(v0,v1,v2,v3,vc)
	print, 'Time: ', STRING(SYSTIME(/SECONDS) - t0)

	rc = 0 & vc = TRANSPOSE([[(i MOD dims[0])], [((i / dims[0]) MOD
(dims[1]))], [(i / (dims[0] * dims[1]))]])

	t0 =SYSTIME(/SECONDS)
	rc = vc2rc_accel(v0,v1,v2,v3,vc)
	rc = 0 & vc = TRANSPOSE([[(i MOD dims[0])], [((i / dims[0]) MOD
(dims[1]))], [(i / (dims[0] * dims[1]))]])
	rc = vc2rc_accel(v0,v1,v2,v3,vc)
	print, 'Time: ', STRING(SYSTIME(/SECONDS) - t0)
END

Subject: Re: Accelerating a one-line program doing matrix multiplication
Posted by on Thu, 30 Sep 2010 09:41:19 GMT
View Forum Message <> Reply to Message

On Sep 30, 10:39 am, Axel M <axe...@gmail.com> wrote:
> On Sep 29, 6:57 pm, Karl <karl.w.schu...@gmail.com> wrote:
>

Page 10 of 20 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7131
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31319&goto=72748#msg_72748
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=72748
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>
>> On Sep 29, 10:05 am, Paolo <pgri...@gmail.com> wrote:
>
>>> On Sep 29, 11:55 am, Axel M <axe...@gmail.com> wrote:
>
>>>> On 29 Sep., 17:45, Paulo Penteado <pp.pente...@gmail.com> wrote:
>
>>>> > On Sep 29, 12:24 pm, Axel M <axe...@gmail.com> wrote:
>
>>>> > > Great, I did not know about this construction, and honestly I do not
>>>> > > understand how it works (is there any documentation about it?).
>>>> > > Anyways, I tried it, and unfortunately I saw that it needed ~20%
>>>> > > longer (the complete function, not the rebin only). So, it is not
>>>> > > faster.. but it is great though.
>
>>>> > It is replicating a structure of a single field which contains the
>>>> > array input ({temp:input}), then selecting only a single field (the
>>>> > first, 0) of the resulting structure array. Documentation for this
>>>> > would be on creation and use of structures.
>
>>>> Ok, I got it. Thanks! Then probably it is the memory allocation for
>>>> the array of structures which takes so long... it would be great if
>>>> the ITT people would develop a _fast_ vector replicate, I fear
>>>> rebinning is not the best option.
>
>>>> In any case, based on the answers, I assume that my problem is rather
>>>> on the matrix multiplication part, so I can probably do nothing for
>>>> that.
>
>>>> Thanks a lot
>
>>> well considering your original problem - you need to apply
>>> a linear transformation to N vectors v_i=(x_i,y_i,z_i),
>>> for i going from 0 to a large N, right?
>
>>> I would just explicitely compute the transformed vectors
>
>>> z_i=(xx_i,yy_i,zz_i)
>
>>> by just writing out in the program the computation for every
>>> component,
>>> i.e.
>
>>> xx=x*c1+y*c2+z*c3+c4
>>> and same for yy,zz with appropriate constant coefficients c1,c2,c3,c4
>>> (that are the same for all i).
>

Page 11 of 20 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>> But then maybe i misunderstood the problem...
>
>>> Ciao,
>>> Paolo
>
>> Yeah, I think you are right.
>
>> Another way to see it:
>
>> FUNCTION vc2rc, v0,v1,v2,v3,vc
>> xform = [[v1],[v2],[v3]]
>> n = <number of points in vc>
>> for i=0, n-1
>> temp = vc[*,i]
>> temp = temp # xform + v0
>> vc[*,i] = temp
>> end
>> END
>
>> This assumes that you can change vc itself and that v0 is a 3-vector.
>> In this case, there is only one copy of the point array, as it is
>> being transformed in place. In other schemes, there may have been as
>> many as three or four copies. If it is not OK to change vc, then this
>> function would have to make a vr array of the same shape as vc and
>> return it. But it is still the best solution as far as memory goes.
>
>> Yeah, the for loop is going to be slow, but a test will tell if it is
>> faster than other approaches. If the program causes paging to disk
>> with the original approach, then the for loop may be faster. If speed
>> is really, really important, then the above can be implemented in a C
>> DLM.
>
>> And yes, the three lines with "temp" can be collapsed into one, but
>> IDL will make small temps anyway here and so a single line may not be
>> much faster. I left it as three lines for clarity.
>
> Hi,
>
> Thanks for the idea. I tried it, below is the function code (original
> and "accelerated" with your idea) and the test code. By explicitly
> applying the linear transformation (_accel version) within a loop it
> took 15 times longer... I guess IDL does this better with the #
> operator.
>
> I still think I can most definitely gain time by using the fact that
> vc represents just all indexes of an array, but I have to find out how
> to exploit this property...
>

Page 12 of 20 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> FUNCTION vc2rc, v0,v1,v2,v3,vc
> RETURN, [[v1],[v2],[v3]] # vc + REBIN(v0, SIZE(vc, /DIMENSIONS))
> END
>
> FUNCTION vc2rc_accel, v0,v1,v2,v3,vc
> npoints = (SIZE(vc, /DIMENSIONS))[1]
> for i=0L, npoints-1 DO BEGIN
> vc[*,i] = vc[0,i] * v1 + vc[1,i] * v2 + vc[2,i] * v3 + v0
> endfor
> RETURN, vc
> END
>
> PRO testspeed
> dims = [100,100,100]
> i = LINDGEN(LONG(dims[0])*dims[1]*dims[2]) ;image dimensions
> vc = TRANSPOSE([[(i MOD dims[0])], [((i / dims[0]) MOD
> (dims[1]))], [(i / (dims[0] * dims[1]))]])
> v0=[5,5,5] ;origin
> v1=[1.0,0,0] ;vectors
> v2=[0,1.0,0]
> v3=[0,0,2.0]
>
> t0 =SYSTIME(/SECONDS)
> rc = vc2rc_accel(v0,v1,v2,v3,vc)
> rc = 0 & vc = TRANSPOSE([[(i MOD dims[0])], [((i / dims[0]) MOD
> (dims[1]))], [(i / (dims[0] * dims[1]))]])
> rc = vc2rc_accel(v0,v1,v2,v3,vc)
> print, 'Time: ', STRING(SYSTIME(/SECONDS) - t0)
>
> rc = 0 & vc = TRANSPOSE([[(i MOD dims[0])], [((i / dims[0]) MOD
> (dims[1]))], [(i / (dims[0] * dims[1]))]])
>
> t0 =SYSTIME(/SECONDS)
> rc = vc2rc(v0,v1,v2,v3,vc)
> rc = 0 & vc = TRANSPOSE([[(i MOD dims[0])], [((i / dims[0]) MOD
> (dims[1]))], [(i / (dims[0] * dims[1]))]])
> rc = vc2rc(v0,v1,v2,v3,vc)
> print, 'Time: ', STRING(SYSTIME(/SECONDS) - t0)
>
> rc = 0 & vc = TRANSPOSE([[(i MOD dims[0])], [((i / dims[0]) MOD
> (dims[1]))], [(i / (dims[0] * dims[1]))]])
>
> t0 =SYSTIME(/SECONDS)
> rc = vc2rc_accel(v0,v1,v2,v3,vc)
> rc = 0 & vc = TRANSPOSE([[(i MOD dims[0])], [((i / dims[0]) MOD
> (dims[1]))], [(i / (dims[0] * dims[1]))]])
> rc = vc2rc_accel(v0,v1,v2,v3,vc)
> print, 'Time: ', STRING(SYSTIME(/SECONDS) - t0)

Page 13 of 20 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> END

Hi again,

I found a solution which is ~20% faster, receiving the dimensions of
the image directly instead of the "vc" points (since, as I said, it is
in this case where speed really becomes an issue). It is doing
additions rather than multiplications, which appears to work faster.

FUNCTION rc_fromimage, v0,v1,v2,v3,dims
	RETURN, REBIN(v1 # INDGEN(dims[0]), [3, dims]) + REBIN(REFORM(v2 #
INDGEN(dims[1]), 3, 1, dims[1], 1), [3, dims]) + REBIN(REFORM(v3 #
INDGEN(dims[2]), 3, 1, 1, dims[2]), [3, dims])
END

within testspeed, the tests looks like "rc =
rc_fromimage(v0,v1,v2,v3,dims)"

Subject: Re: Accelerating a one-line program doing matrix multiplication
Posted by on Thu, 30 Sep 2010 11:05:36 GMT
View Forum Message <> Reply to Message

On Sep 30, 11:41 am, Axel M <axe...@gmail.com> wrote:
> On Sep 30, 10:39 am, Axel M <axe...@gmail.com> wrote:
>
>
>
>> On Sep 29, 6:57 pm, Karl <karl.w.schu...@gmail.com> wrote:
>
>>> On Sep 29, 10:05 am, Paolo <pgri...@gmail.com> wrote:
>
>>>> On Sep 29, 11:55 am, Axel M <axe...@gmail.com> wrote:
>
>>>> > On 29 Sep., 17:45, Paulo Penteado <pp.pente...@gmail.com> wrote:
>
>>>> > > On Sep 29, 12:24 pm, Axel M <axe...@gmail.com> wrote:
>
>>>> > > > Great, I did not know about this construction, and honestly I do not
>>>> > > > understand how it works (is there any documentation about it?).
>>>> > > > Anyways, I tried it, and unfortunately I saw that it needed ~20%
>>>> > > > longer (the complete function, not the rebin only). So, it is not
>>>> > > > faster.. but it is great though.
>
>>>> > > It is replicating a structure of a single field which contains the
>>>> > > array input ({temp:input}), then selecting only a single field (the
>>>> > > first, 0) of the resulting structure array. Documentation for this
>>>> > > would be on creation and use of structures.

Page 14 of 20 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7131
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31319&goto=72747#msg_72747
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=72747
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>>>> > Ok, I got it. Thanks! Then probably it is the memory allocation for
>>>> > the array of structures which takes so long... it would be great if
>>>> > the ITT people would develop a _fast_ vector replicate, I fear
>>>> > rebinning is not the best option.
>
>>>> > In any case, based on the answers, I assume that my problem is rather
>>>> > on the matrix multiplication part, so I can probably do nothing for
>>>> > that.
>
>>>> > Thanks a lot
>
>>>> well considering your original problem - you need to apply
>>>> a linear transformation to N vectors v_i=(x_i,y_i,z_i),
>>>> for i going from 0 to a large N, right?
>
>>>> I would just explicitely compute the transformed vectors
>
>>>> z_i=(xx_i,yy_i,zz_i)
>
>>>> by just writing out in the program the computation for every
>>>> component,
>>>> i.e.
>
>>>> xx=x*c1+y*c2+z*c3+c4
>>>> and same for yy,zz with appropriate constant coefficients c1,c2,c3,c4
>>>> (that are the same for all i).
>
>>>> But then maybe i misunderstood the problem...
>
>>>> Ciao,
>>>> Paolo
>
>>> Yeah, I think you are right.
>
>>> Another way to see it:
>
>>> FUNCTION vc2rc, v0,v1,v2,v3,vc
>>> xform = [[v1],[v2],[v3]]
>>> n = <number of points in vc>
>>> for i=0, n-1
>>> temp = vc[*,i]
>>> temp = temp # xform + v0
>>> vc[*,i] = temp
>>> end
>>> END
>
>>> This assumes that you can change vc itself and that v0 is a 3-vector.

Page 15 of 20 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>> In this case, there is only one copy of the point array, as it is
>>> being transformed in place. In other schemes, there may have been as
>>> many as three or four copies. If it is not OK to change vc, then this
>>> function would have to make a vr array of the same shape as vc and
>>> return it. But it is still the best solution as far as memory goes.
>
>>> Yeah, the for loop is going to be slow, but a test will tell if it is
>>> faster than other approaches. If the program causes paging to disk
>>> with the original approach, then the for loop may be faster. If speed
>>> is really, really important, then the above can be implemented in a C
>>> DLM.
>
>>> And yes, the three lines with "temp" can be collapsed into one, but
>>> IDL will make small temps anyway here and so a single line may not be
>>> much faster. I left it as three lines for clarity.
>
>> Hi,
>
>> Thanks for the idea. I tried it, below is the function code (original
>> and "accelerated" with your idea) and the test code. By explicitly
>> applying the linear transformation (_accel version) within a loop it
>> took 15 times longer... I guess IDL does this better with the #
>> operator.
>
>> I still think I can most definitely gain time by using the fact that
>> vc represents just all indexes of an array, but I have to find out how
>> to exploit this property...
>
>> FUNCTION vc2rc, v0,v1,v2,v3,vc
>> RETURN, [[v1],[v2],[v3]] # vc + REBIN(v0, SIZE(vc, /DIMENSIONS))
>> END
>
>> FUNCTION vc2rc_accel, v0,v1,v2,v3,vc
>> npoints = (SIZE(vc, /DIMENSIONS))[1]
>> for i=0L, npoints-1 DO BEGIN
>> vc[*,i] = vc[0,i] * v1 + vc[1,i] * v2 + vc[2,i] * v3 + v0
>> endfor
>> RETURN, vc
>> END
>
>> PRO testspeed
>> dims = [100,100,100]
>> i = LINDGEN(LONG(dims[0])*dims[1]*dims[2]) ;image dimensions
>> vc = TRANSPOSE([[(i MOD dims[0])], [((i / dims[0]) MOD
>> (dims[1]))], [(i / (dims[0] * dims[1]))]])
>> v0=[5,5,5] ;origin
>> v1=[1.0,0,0] ;vectors
>> v2=[0,1.0,0]

Page 16 of 20 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> v3=[0,0,2.0]
>
>> t0 =SYSTIME(/SECONDS)
>> rc = vc2rc_accel(v0,v1,v2,v3,vc)
>> rc = 0 & vc = TRANSPOSE([[(i MOD dims[0])], [((i / dims[0]) MOD
>> (dims[1]))], [(i / (dims[0] * dims[1]))]])
>> rc = vc2rc_accel(v0,v1,v2,v3,vc)
>> print, 'Time: ', STRING(SYSTIME(/SECONDS) - t0)
>
>> rc = 0 & vc = TRANSPOSE([[(i MOD dims[0])], [((i / dims[0]) MOD
>> (dims[1]))], [(i / (dims[0] * dims[1]))]])
>
>> t0 =SYSTIME(/SECONDS)
>> rc = vc2rc(v0,v1,v2,v3,vc)
>> rc = 0 & vc = TRANSPOSE([[(i MOD dims[0])], [((i / dims[0]) MOD
>> (dims[1]))], [(i / (dims[0] * dims[1]))]])
>> rc = vc2rc(v0,v1,v2,v3,vc)
>> print, 'Time: ', STRING(SYSTIME(/SECONDS) - t0)
>
>> rc = 0 & vc = TRANSPOSE([[(i MOD dims[0])], [((i / dims[0]) MOD
>> (dims[1]))], [(i / (dims[0] * dims[1]))]])
>
>> t0 =SYSTIME(/SECONDS)
>> rc = vc2rc_accel(v0,v1,v2,v3,vc)
>> rc = 0 & vc = TRANSPOSE([[(i MOD dims[0])], [((i / dims[0]) MOD
>> (dims[1]))], [(i / (dims[0] * dims[1]))]])
>> rc = vc2rc_accel(v0,v1,v2,v3,vc)
>> print, 'Time: ', STRING(SYSTIME(/SECONDS) - t0)
>> END
>
> Hi again,
>
> I found a solution which is ~20% faster, receiving the dimensions of
> the image directly instead of the "vc" points (since, as I said, it is
> in this case where speed really becomes an issue). It is doing
> additions rather than multiplications, which appears to work faster.
>
> FUNCTION rc_fromimage, v0,v1,v2,v3,dims
> RETURN, REBIN(v1 # INDGEN(dims[0]), [3, dims]) + REBIN(REFORM(v2 #
> INDGEN(dims[1]), 3, 1, dims[1], 1), [3, dims]) + REBIN(REFORM(v3 #
> INDGEN(dims[2]), 3, 1, 1, dims[2]), [3, dims])
> END
>
> within testspeed, the tests looks like "rc =
> rc_fromimage(v0,v1,v2,v3,dims)"

Sorry, small correction adding v0 which I forgot before:

Page 17 of 20 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

FUNCTION rc_fromdims, v0,v1,v2,v3,dims
	RETURN, $
		REBIN(v0, [3, dims], /SAMPLE) + $
		REBIN(v1 # INDGEN(dims[0]), [3, dims], /SAMPLE) + $
		REBIN(REFORM(v2 # INDGEN(dims[1]), 3, 1, dims[1], 1), [3, dims], /
SAMPLE) + $
		REBIN(REFORM(v3 # INDGEN(dims[2]), 3, 1, 1, dims[2]), [3, dims], /
SAMPLE)
END

Subject: Re: Accelerating a one-line program doing matrix multiplication
Posted by pgrigis on Thu, 30 Sep 2010 14:59:59 GMT
View Forum Message <> Reply to Message

[skip]
>
> FUNCTION vc2rc_accel, v0,v1,v2,v3,vc
> npoints = (SIZE(vc, /DIMENSIONS))[1]
> for i=0L, npoints-1 DO BEGIN
> vc[*,i] = vc[0,i] * v1 + vc[1,i] * v2 + vc[2,i] * v3 + v0
> endfor
> RETURN, vc
> END

No, that's using a for loop - that's why it is slow.
You want something like this (no loops):

vc0=vc[0,*]
vc1=vc[1,*]
vc2=vc[2,*]
vc[0,*]=vc0*v1[0]+vc1*v2[0]+vc3*v3[0]
vc[1,*]=vc0*v1[1]+vc1*v2[1]+...
vc[2,*]=vc0*v1[2]+...

Ciao,
Paolo

Subject: Re: Accelerating a one-line program doing matrix multiplication
Posted by pgrigis on Thu, 30 Sep 2010 15:03:43 GMT
View Forum Message <> Reply to Message

On Sep 30, 10:59 am, Paolo <pgri...@gmail.com> wrote:
> [skip]
>
>

Page 18 of 20 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6214
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31319&goto=72744#msg_72744
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=72744
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6214
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31319&goto=72743#msg_72743
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=72743
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>> FUNCTION vc2rc_accel, v0,v1,v2,v3,vc
>> npoints = (SIZE(vc, /DIMENSIONS))[1]
>> for i=0L, npoints-1 DO BEGIN
>> vc[*,i] = vc[0,i] * v1 + vc[1,i] * v2 + vc[2,i] * v3 + v0
>> endfor
>> RETURN, vc
>> END
>
> No, that's using a for loop - that's why it is slow.
> You want something like this (no loops):
>
> vc0=vc[0,*]
> vc1=vc[1,*]
> vc2=vc[2,*]
> vc[0,*]=vc0*v1[0]+vc1*v2[0]+vc3*v3[0]
> vc[1,*]=vc0*v1[1]+vc1*v2[1]+...
> vc[2,*]=vc0*v1[2]+...
>
> Ciao,
> Paolo

well, there's a bit of an index mismatch
in there...

vc[0,*]=vc0*v1[0]+vc1*v2[0]+vc2*v3[0]
vc[1,*]=vc0*v1[1]+vc1*v2[1]+vc2*v3[1]
vc[2,*]=vc0*v1[2]+vc1*v2[2]+vc2*v3[2]

Subject: Re: Accelerating a one-line program doing matrix multiplication
Posted by on Thu, 30 Sep 2010 16:38:33 GMT
View Forum Message <> Reply to Message

On Sep 30, 5:03 pm, Paolo <pgri...@gmail.com> wrote:
> On Sep 30, 10:59 am, Paolo <pgri...@gmail.com> wrote:
>
>
>
>> [skip]
>
>>> FUNCTION vc2rc_accel, v0,v1,v2,v3,vc
>>> npoints = (SIZE(vc, /DIMENSIONS))[1]
>>> for i=0L, npoints-1 DO BEGIN
>>> vc[*,i] = vc[0,i] * v1 + vc[1,i] * v2 + vc[2,i] * v3 + v0
>>> endfor
>>> RETURN, vc

Page 19 of 20 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7131
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31319&goto=72742#msg_72742
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=72742
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>> END
>
>> No, that's using a for loop - that's why it is slow.
>> You want something like this (no loops):
>
>> vc0=vc[0,*]
>> vc1=vc[1,*]
>> vc2=vc[2,*]
>> vc[0,*]=vc0*v1[0]+vc1*v2[0]+vc3*v3[0]
>> vc[1,*]=vc0*v1[1]+vc1*v2[1]+...
>> vc[2,*]=vc0*v1[2]+...
>
>> Ciao,
>> Paolo
>
> well, there's a bit of an index mismatch
> in there...
>
> vc[0,*]=vc0*v1[0]+vc1*v2[0]+vc2*v3[0]
> vc[1,*]=vc0*v1[1]+vc1*v2[1]+vc2*v3[1]
> vc[2,*]=vc0*v1[2]+vc1*v2[2]+vc2*v3[2]

Got it, thanks. I changed it in my test, it turned out to be slower
than the original version (about 30% slower).

By now, seeing no way to improve the original version with an
arbitrary vc, I stick to the version of "adding REBINS" for the case
where all indexes from an image are given as input. This is the
critical case for my application anyways. When a smaller region is
wanted, the original version can be used.

Page 20 of 20 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

