
Subject: Re: Still missing features in IDL 8
Posted by chris_torrence@NOSPAM on Wed, 13 Oct 2010 16:38:24 GMT
View Forum Message <> Reply to Message

Hi Paulo,

Great ideas! I just added #1 to the list (ha!) of potential features
for IDL 8.1.

Regarding #2, what if you could use additional indices to access array
elements within lists?

For example:

IDL> a = LIST(FINDGEN(10), BYTARR(5,3))
IDL> help, a[0]
<Expression> FLOAT = Array[10]
IDL> help, a[0,3] ; currently throws an error in IDL8.0
<Expression> FLOAT = 3.00000
IDL> a[0,3] = !pi ; currently throws an error in IDL8.0

IDL> help, a[1]
<Expression> BYTE = Array[5, 3]
IDL> help, a[1,4,2] ; currently throws an error in IDL8.0
<Expression> BYTE = 0
IDL> a[1,4,2] = 255 ; currently throws an error in IDL8.0

So the first index would give the list element, and the remaining
indices would index into the array itself. Obviously you could only
have up to 7 dimensions in your contained array, but that probably
isn't a huge limitation.

Thoughts?

-Chris
ITTVIS

Subject: Re: Still missing features in IDL 8
Posted by penteado on Fri, 15 Oct 2010 00:26:55 GMT
View Forum Message <> Reply to Message

On Oct 13, 1:38 pm, Chris Torrence <gorth...@gmail.com> wrote:
> Regarding #2, what if you could use additional indices to access array
> elements within lists?
>
> For example:
>

Page 1 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6021
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31382&goto=72871#msg_72871
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=72871
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31382&goto=72940#msg_72940
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=72940
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> IDL> a = LIST(FINDGEN(10), BYTARR(5,3))
> IDL> help, a[0]
> <Expression> FLOAT = Array[10]
> IDL> help, a[0,3] ; currently throws an error in IDL8.0
> <Expression> FLOAT = 3.00000
> IDL> a[0,3] = !pi ; currently throws an error in IDL8.0
>
> IDL> help, a[1]
> <Expression> BYTE = Array[5, 3]
> IDL> help, a[1,4,2] ; currently throws an error in IDL8.0
> <Expression> BYTE = 0
> IDL> a[1,4,2] = 255 ; currently throws an error in IDL8.0
>
> So the first index would give the list element, and the remaining
> indices would index into the array itself. Obviously you could only
> have up to 7 dimensions in your contained array, but that probably
> isn't a huge limitation.
>
> Thoughts?

It took me a while to answer because I was considering the
implications. It is a very clever idea. As I wrote above, I thought
there would be no way to do this without changing the interpreter, and
thus this would be a big problem to implement. But using additional
indices means no new syntax, it is just a regular call to
overloadbracketsrightside(). It seems it could even be implemented
today, with IDL code, with a class inheriting from list. And this
addition would be a very small break in compatibility: it would only
break in the sense that what now throws an error (like a[0,3] above)
would become valid. Small break, and dependent on a recent feature - a
reason to implement this soon, while the likelihood of breaking code
is still low.

I had been trying to figure out what the downsides could be. The clear
limitation is the loss of one dimension to subscript the array, as you
mentioned. How relevant this is in part depends on whether there are
any discussions about changing the two 8D limits (the limit for
arrays, which is probably deeply ingrained in many places in the
interpreter and the API, and the limit for the overloadbrackets
methods, which was introduced now, and can probably change much more
easily).

My impression so far is that it would be good to implement this now.
8D arrays are probably very rare, and when one is dealing with 8
indices (or ranges of indices), things are probably somewhat unwieldy
anyway, as in any situation where one is counting positional things
(indices or positional arguments). The more likely situation for this
problem to appear seems to be with a few nested lists, with 3-4D

Page 2 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

arrays, where each list would consume one index, but again, it would
be an unwieldy situation without the limitation anyway, and other data
structures, or separating the code in more than one expression, might
be more appropriate.

Maybe I will write a derived class now and start using it, to see if I
encounter any unforeseen problems. Of course, for this to come with
IDL's lists, it would be better to have it not written in IDL, as was
the case with the implementation of lists and hashes. By the way, are
the current lists and hashes like DLMs? Are they in the interpreter?

Subject: Re: Still missing features in IDL 8
Posted by penteado on Mon, 01 Nov 2010 00:00:15 GMT
View Forum Message <> Reply to Message

On Oct 13, 2:38 pm, Chris Torrence <gorth...@gmail.com> wrote:
> Regarding #2, what if you could use additional indices to access array
> elements within lists?
>
> For example:
>
> IDL> a = LIST(FINDGEN(10), BYTARR(5,3))
> IDL> help, a[0]
> <Expression> FLOAT = Array[10]
> IDL> help, a[0,3] ; currently throws an error in IDL8.0
> <Expression> FLOAT = 3.00000
> IDL> a[0,3] = !pi ; currently throws an error in IDL8.0
>
> IDL> help, a[1]
> <Expression> BYTE = Array[5, 3]
> IDL> help, a[1,4,2] ; currently throws an error in IDL8.0
> <Expression> BYTE = 0
> IDL> a[1,4,2] = 255 ; currently throws an error in IDL8.0
>
> So the first index would give the list element, and the remaining
> indices would index into the array itself. Obviously you could only
> have up to 7 dimensions in your contained array, but that probably
> isn't a huge limitation.

I was writing a class like that, inheriting from list, and that
brought me a question: Should the extra dimension (of the list index)
be on the left, as above, or on the right?

The notation (already valid for retrieving values) (a[1])[0] suggests
that the array index should come on the left. However, writing a[1,0]
suggests array dimensions, in which case the list index would make
more sense on the right, as the list dimension is the slowest-varying

Page 3 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31382&goto=73216#msg_73216
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=73216
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

one.

Tough it would be a bit incoherent with the array dimension order, it
seems to me that it is better to have the list index on the left. That
way,

print,(a[1])[0] ;already valid

would be the same as

print,a[1,0]

instead of the more confusing

print,a[0,1]

Any thoughts on that?

Page 4 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

