Subject: LIST extensions
Posted by Paul Van Delst[1] on Tue, 14 Dec 2010 21:51:11 GMT

View Forum Message <> Reply to Message

Hello,

Sorry to keep flogging this particular topic, but I'm currently up to my eyes in adapting some code
from using pointers

to using lists (partly for curiosity, partly to avoid nested pointer dereferencing), and I've found the
very simple

methods below to be useful in dealing with the "is it empty?", "are there nulls in the list?" etc type
of questions I've

been asking here.

Comments?
cheers,

paulv

T

; NAME:
; List::Empty

; PURPOSE:
; The List::Empty function method return TRUE if a list contains
; no elements, FALSE otherwise.

; CALLING SEQUENCE:
; result = Obj->[List::]Empty()

FUNCTION List::Empty
RETURN, N_ELEMENTS(self) EQ O
END

T

; NAME:

; List::Length

; PURPOSE:

; The List::Length function method returns the number of

) elements in a list.

; CALLING SEQUENCE:
; result = Obj->[List::]Length()

Page 1 of 4 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31725&goto=73973#msg_73973
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=73973
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

FUNCTION List::Length
RETURN, N_ELEMENTS(self)
END

T

: NAME:

; List::n_Items

: PURPOSE:

: The List::n_Items function method returns the number of

; non-null elements in a list.

; CALLING SEQUENCE:
; result = Obj->[List::]n_Items()

FUNCTION List::n_Items
idx = WHERE(self NE INULL, count)
RETURN, count

END

T
; NAME:
; List::Compact
; PURPOSE:
; The List::Compact function method returns a copy of a list
: with all null elements removed.
; CALLING SEQUENCE:
; result = Obj->[List::;]Compact()
FUNCTION List::Compact
idx = WHERE(self NE INULL, count)
RETURN, (count GT 0) ? self[idx] : LIST()
END

Subject: Re: LIST extensions
Posted by Jeremy Bailin on Thu, 23 Dec 2010 14:00:10 GMT

View Forum Message <> Reply to Message

On Dec 22, 6:47 pm, Paulo Penteado <pp.pente...@gmail.com> wrote:

> On Dec 14, 8:31 pm, Paulo Penteado <pp.pente...@gmail.com> wrote:
>

>> This is very pertinent. Those are important needed features / bug

>> fixes that were missed in the way lists and hashes were implemented.

Page 2 of 4 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31725&goto=74104#msg_74104
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=74104
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> They are good ideas to add to the class | started implementing, which
>> will also include deep copy, conversion to/from pointer arrays, and
>> fix those issues with non existing elements.

VVVVVVVVVYVVYVYVYVYVYVYV

Other changes | am considering to put in my derived classes:

1) Make lists do nothing (as hashes already do) if Inull is used as
index on _overloadBracketsLeftSide.

2) Make lists and hashes return !Inull when Inull is used as an index
(now they throw an error).

3) Make lists and hashes accept !null on the _overloadPlus method and
do nothing, instead of throwing an error.

(3) is to work in conjunction with (2), so that lists/hashes can be
added to indexed lists/hashes, without having to verify if the index
is not 'null.

Any thoughts?

| think (3) is a good idea on its own, regardless of (2). 'null seems
to me a natural convention for an empty list/hash.

(but this is coming from someone who hasn't yet used IDLS...)

-Jeremy.

Subject: Re: LIST extensions
Posted by penteado on Sun, 02 Jan 2011 07:14:06 GMT

View Forum Message <> Reply to Message

On Jan 2, 4:37 am, Paulo Penteado <pp.pente...@gmail.com> wrote:

>
>
>
>
>
>
>
>
>
>
>
>
>
>

| have really been finding inconvenient the lack of these, and noticed
another shortcoming: _overloadPlus should add to a list something that
is not a list. So that

[1=list()

12=list(1,2,3)
w=where(I2.toarray() eq 2)
[1+=12[w]

Does not throw an error. As it is now, it takes a lot of work to
select elements from a list with where(): not only it is necessary to
test for no results (because 'null is not accepted as index for
lists), but it is also necessary to test for a single match, as a list
indexed by a scalar (or 1-element array) returns the list element,

Page 3 of 4 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31725&goto=74203#msg_74203
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=74203
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVVVVVVYVYVYVYVYVYV

which cannot be concatenated to a list (unless the element happens to
be a list, which would not throw an error, but would concatenate in
the wrong way).

An alternative is not change _overloadPlus, but change
_overloadBracketsRightSide to return a 1-element list when given a 1-
element array as index. It should still return the element when

indexed by a scalar.

And doing these things also makes me think that, for syntatic sugar,
there should be a list::where() method that would simply call where()
on the list's toarray() result. Or where() should automatically call
toarray() if given a list.

Also, the remove method should not remove elements when the index it
is given is Inull. For the same reason, as, in the example above,

I2.remove,where(I2.toarray() It 0,/null)

Will remove the last element of 12, instead of removing nothing.

But this has an implementation difficulty: how can a routine

distinguish between being given Inull for an argument, and not being
given that argument? | remember this being asked, but do not remember
if there was an answer. The only way | can think of now is to try to
concatenate something to it, and catch the error that gets thrown in

case the variable is not Inull. As in:

function pp_isnull,a

compile_opt idl2,logical_predicate
catch,err

if err then begin

catch,/cancel
ret=0

endif else begin

b=[a,a]
ret=1

endelse
return,ret
end

Page 4 of 4 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

