
Subject: Re: Why is MEAN so slow?
Posted by wlandsman on Wed, 19 Jan 2011 01:36:02 GMT
View Forum Message <> Reply to Message

On Tuesday, January 18, 2011 7:52:45 PM UTC-5, Matthew Francis wrote:
> I've been using the PROFILER to track down why some code was a bit
> slow and found that it was spending most of its time in the MEAN
> function (and then within that, in the MOMENT function called by
> MEAN).
>
In IDL 8.0, MEAN no longer calls MOMENT but does the calculation itself using code similar to
your MEAN_QUICK. (This is part of the upgrade that also added a DIMENSION keyword.)

But I don't see anything inefficient about the earlier code which called MOMENT(). In fact, I find
the same processing times whether using MEAN_QUICK, the pre-8.0 MEAN(), or the V8.0
MEAN(). (My test consisted of taking the mean of a 5000 x 5000 randomn array with selected
values set to NAN.)

--Wayne

Subject: Re: Why is MEAN so slow?
Posted by Matt Francis on Wed, 19 Jan 2011 02:14:04 GMT
View Forum Message <> Reply to Message

Interesting. I've only tested this for 1 dimensional arrays on IDL
7.1, not for matrices (the application that I was trying to speed up
only used MEAN on 1D arrays).

Here is how I am comparing the two with a test code:

pro test_mean_speed

 ; Test whether the inbuilt MEAN function is slower than MEAN_QUICK

 n = 100000

 data = randomu(seed,100000)

 indx = where(data GT 0.9,count)

 data[indx] = !values.f_nan

 for i=0,10000 do begin
 ;foo=mean_quick(data,/nan)
 foo=mean(data,/nan)
 endfor

Page 1 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3563
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31876&goto=74498#msg_74498
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=74498
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7076
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31876&goto=74497#msg_74497
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=74497
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

end

I ran this once using MEAN and once using MEAN_QUICK. Here are the
full results from PROFILER

For MEAN:

Module Type Count Only(s) Avg.(s) Time(s) Avg.
(s)
ABS (S) 10001 5.040137 0.000504 5.040137
0.000504
ARG_PRESENT (S) 10001 0.005722 0.000001 0.005722
0.000001
FINITE (S) 10001 3.328896 0.000333 3.328896
0.000333
KEYWORD_SET (S) 30003 0.014247 0.000000 0.014247
0.000000
MEAN (U) 10001 0.025580 0.000003 61.421387
0.006142
MOMENT (U) 20002 32.259783 0.001613 108.917069
0.005445
N_ELEMENTS (S) 20002 0.008905 0.000000 0.008905
0.000000
ON_ERROR (S) 30003 0.012295 0.000000 0.012295
0.000000
RANDOMU (S) 1 0.001750 0.001750 0.001750
0.001750
SIZE (S) 10001 0.011161 0.000001 0.011161
0.000001
SQRT (S) 10001 0.007367 0.000001 0.007367
0.000001
TEST_MEAN_SPEED (U) 1 0.006986 0.006986 61.430769
61.430769
TOTAL (S) 60006 18.553728 0.000309 18.553728
0.000309
WHERE (S) 10002 2.154211 0.000215 2.154211
0.000215

For MEAN_QUICK:

Module Type Count Only(s) Avg.(s) Time(s) Avg.
(s)
FINITE (S) 10001 3.247247 0.000325 3.247247
0.000325
KEYWORD_SET (S) 10001 0.004842 0.000000 0.004842
0.000000
MEAN_QUICK (U) 10001 1.432719 0.000143 9.902029

Page 2 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

0.000990
RANDOMU (S) 1 0.001732 0.001732 0.001732
0.001732
TEST_MEAN_SPEED (U) 1 0.011449 0.011449 9.915830
9.915830
TOTAL (S) 10001 3.133684 0.000313 3.133684
0.000313
WHERE (S) 10002 2.084156 0.000208 2.084156
0.000208

According to PROFILER (as well as the obvious difference in how long
they ran for), MEAN_QUICK is much faster, for this specific problem.

Subject: Re: Why is MEAN so slow?
Posted by wlandsman on Wed, 19 Jan 2011 19:08:05 GMT
View Forum Message <> Reply to Message

On Tuesday, January 18, 2011 9:14:04 PM UTC-5, Matthew Francis wrote:
> Interesting. I've only tested this for 1 dimensional arrays on IDL
> 7.1, not for matrices (the application that I was trying to speed up
> only used MEAN on 1D arrays).

It turns out that there is a bug in the moment.pro function in IDL 7.1 (but not in 7.0 or before, or in
8.0). There is a MAXMOMENT keyword that is supposed to tell moment.pro not to calculate
higher order moments, so if one only wants the mean, then one sets MAXMOMENT = 1. But if
one also supplies /NaN, then MOMENT calls itself recursively after removing the NaN values.
But due to a typo, the MAXMOMENT keyword was not being transmitted, and the program
defaults to MAXMOMENT = 4. So the reason mean.pro was 5 times slower than your program
is that all the higher order moments were being calculated. (MOMENT underwent a major
rewrite for 8.0 and no longer calls itself recursively.)

Another mystery was why, in IDL 8.0, the IDL mean.pro function is almost twice as fast as your
mean_quick.pro function for your example. The reason is that it does not use the WHERE
function -- you want to know how many NaN values there are, but you don't care where they are.
 Here is how one would modify mean_quick.pro to not use WHERE --Wayne

function mean_quick8,data,nan=nan,double=double

 if keyword_set(nan) then begin
 count =total(~finite(data,/Nan),/integer)
 if count EQ 0 then return, $
 keyword_set(double) ? !values.D_nan : !values.f_nan
 return, total(data,double=double,/nan)/count
 endif else begin
 return,total(data,double=double)/n_elements(data)
 endelse

Page 3 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3563
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31876&goto=74480#msg_74480
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=74480
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

end

Subject: Re: Why is MEAN so slow?
Posted by Foldy Lajos on Wed, 19 Jan 2011 19:49:54 GMT
View Forum Message <> Reply to Message

On Wed, 19 Jan 2011, wlandsman wrote:

> On Tuesday, January 18, 2011 9:14:04 PM UTC-5, Matthew Francis wrote:
>> Interesting. I've only tested this for 1 dimensional arrays on IDL
>> 7.1, not for matrices (the application that I was trying to speed up
>> only used MEAN on 1D arrays).
>
> It turns out that there is a bug in the moment.pro function in IDL 7.1 (but not in 7.0 or before, or
in 8.0). There is a MAXMOMENT keyword that is supposed to tell moment.pro not to calculate
higher order moments, so if one only wants the mean, then one sets MAXMOMENT = 1. But if
one also supplies /NaN, then MOMENT calls itself recursively after removing the NaN values.
But due to a typo, the MAXMOMENT keyword was not being transmitted, and the program
defaults to MAXMOMENT = 4. So the reason mean.pro was 5 times slower than your program
is that all the higher order moments were being calculated. (MOMENT underwent a major
rewrite for 8.0 and no longer calls itself recursively.)
>
> Another mystery was why, in IDL 8.0, the IDL mean.pro function is almost twice as fast as your
mean_quick.pro function for your example. The reason is that it does not use the WHERE
function -- you want to know how many NaN values there are, but you don't care where they are.
 Here is how one would modify mean_quick.pro to not use WHERE --Wayne
>
> function mean_quick8,data,nan=nan,double=double
>
> if keyword_set(nan) then begin
> count =total(~finite(data,/Nan),/integer)
> if count EQ 0 then return, $
> keyword_set(double) ? !values.D_nan : !values.f_nan
> return, total(data,double=double,/nan)/count
> endif else begin
> return,total(data,double=double)/n_elements(data)
> endelse
>
> end
>

Changing
 count =total(~finite(data,/Nan),/integer)
to
 count =n_elements(data)-total(finite(data,/Nan),/integer)

makes the counting even faster.

Page 4 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4102
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31876&goto=74478#msg_74478
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=74478
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

regards,
Lajos

Subject: Re: Why is MEAN so slow?
Posted by Matt Francis on Wed, 19 Jan 2011 22:06:38 GMT
View Forum Message <> Reply to Message

Thanks a lot to you both. Sounds like I just got unlucky with the 7.1
bug. The shiny new extra extra fast version of MEAN is making the data
processing much faster!

Page 5 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7076
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=31876&goto=74472#msg_74472
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=74472
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

