Subject: re: Should IDL throw a warning in this case?
Posted by pgrigis on Wed, 06 Jul 2011 15:53:07 GMT

View Forum Message <> Reply to Message

Well, this has nothing to do with numbers being to big,
the total of that array is only about 2.16E9, way below
the overflow limit for floats (about 1E39 or so).

The problem is the limited precision of floats, so when you
add 2E9 and a number of order 100 you lose the last few
digits of precision

print,(2E9+300)-2E9
256.000

due to the facts that the floats can only carry about 7-8
digits worth of information.

Now you correctly pointed out that you can solve the
problem by using doubles, however this is not very
satisfactory (after all, you may run into a similar problem
where even the added precision of doubles is not sufficient).

Alternatively, you could use a different way to compute the total.

| suggest the following algorithm: sort the input array, then
add elements 1 and 2, 3 and 4, 5 and 6 and so on.

Then repeat the steps on the summed array and so on.
The function below performs it. It is of course significantly
slower, but returns a better value for the total. When done
on your example array, keeping floats everywhere:

IDL> help,v
Vv FLOAT = Array[150, 150, 27, 13]
IDL> print,max(v),min(v)
273.150 273.150
IDL> print,pg_robust_total(v)/n_elements(v)
273.150

;computes the total of the input array in a slow
;but more robust fashion

FUNCTION pg_robust_total,x
nx=n_elements(x)

ind=sort(x)

Page 1 of 5 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6214
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=32695&goto=76836#msg_76836
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=76836
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

xsorted=x[ind]

numberOfSteps=alog(nx)/alog(2)

FOR i=0,floor(numberOfSteps)-1 DO BEGIN
xsorted=[xsorted[0:*:2],0]+[xsorted[1:*:2],0]

ENDFOR

total=total(xsorted)

return,total

END

Ciao,
Paolo

Fabien wrote:
Hi IDLers,

Just a thought about the last 10 minutes | lost understanding why the
MEAN() function was computing wrong values:

IDL> print, 'VERSION
{ x86_64 linux unix linux 7.1.1 Aug 21 2009 64 64}
IDL> tk = FLTARR(150,150,27,13, /INOZERO)
IDL> tc =tk - 273.15
IDL> print, min(tk-tc), max(tk-tc)
273.150 273.150

everything OK, until:

IDL> print, mean(tk-tc)
267.597

Oh my god, how is this even possible???? Am | getting crazy?
And then, after 5 minutes and a coffee break:

IDL> print, mean(tk-tc, /DOUBLE)
273.14999

Page 2 of 5 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Uf, thank god I'm not crazy.

My feeling would say: IDL should throw a warning when you are
manipulating too big numbers (in my case: too big arrays) with IDL
built-in functions.

However, you IDL experts may not think so. What would be the reasons
for not throwing a warning? Thanks!

Fabien

Subject: Re: Should IDL throw a warning in this case?
Posted by Paul Van Delst[1] on Wed, 06 Jul 2011 16:36:33 GMT

View Forum Message <> Reply to Message

Paolo raises a good point. Ideally the TOTAL function, being relatively generic, should use a
compensated summation

algorithm (e.g. Kahan's is a simple one) that would also allow the caller to sort the data prior to the
summation

(preferably via a /SORT keyword or somesuch). Checking the TOTAL documentation doesn't
seem to indicate anything special

is done in the summation -- although the impact of summation order on the result is discussed in
the "thread_pool" section.

Even though I do it myself, stabilising numerics by simply increasing the floating point precision is
a rather lazy

approach.

cheers,

paulv

Paolo wrote:

> Well, this has nothing to do with numbers being to big,

> the total of that array is only about 2.16E9, way below

> the overflow limit for floats (about 1E39 or so).

>

> The problem is the limited precision of floats, so when you
> add 2E9 and a number of order 100 you lose the last few
> digits of precision

>

> print,(2E9+300)-2E9

> 256.000

>

> due to the facts that the floats can only carry about 7-8

> digits worth of information.

Page 3 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=32695&goto=76840#msg_76840
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=76840
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVYVYVYVYVYV

Now you correctly pointed out that you can solve the
problem by using doubles, however this is not very
satisfactory (after all, you may run into a similar problem
where even the added precision of doubles is not sufficient).

Alternatively, you could use a different way to compute the total.

| suggest the following algorithm: sort the input array, then
add elements 1 and 2, 3 and 4, 5 and 6 and so on.

Then repeat the steps on the summed array and so on.
The function below performs it. It is of course significantly
slower, but returns a better value for the total. When done
on your example array, keeping floats everywhere:

IDL> help,v
Vv FLOAT = Array[150, 150, 27, 13]
IDL> print,max(v),min(v)

273.150 273.150

IDL> print,pg_robust_total(v)/n_elements(v)
273.150

;computes the total of the input array in a slow

;but more robust fashion

FUNCTION pg_robust_total,x

nx=n_elements(x)

ind=sort(x)

xsorted=x[ind]

numberOfSteps=alog(nx)/alog(2)

FOR i=0,floor(numberOfSteps)-1 DO BEGIN
xsorted=[xsorted[0:*:2],0]+[xsorted[1:*:2],0]

ENDFOR

total=total(xsorted)

return,total

END

Page 4 of 5 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVYVYVYVYVYV

Ciao,
Paolo

Fabien wrote:

Hi IDLers,

Just a thought about the last 10 minutes | lost understanding why the
MEAN() function was computing wrong values:

IDL> print, 'VERSION

{ x86_64 linux unix linux 7.1.1 Aug 21 2009 64 64}
IDL> tk = FLTARR(150,150,27,13, /INOZERO)

IDL> tc = tk - 273.15

IDL> print, min(tk-tc), max(tk-tc)
273.150 273.150

everything OK, until:

IDL> print, mean(tk-tc)
267.597

Oh my god, how is this even possible???? Am | getting crazy?
And then, after 5 minutes and a coffee break:

IDL> print, mean(tk-tc, /DOUBLE)
273.14999

Uf, thank god I'm not crazy.
My feeling would say: IDL should throw a warning when you are
manipulating too big numbers (in my case: too big arrays) with IDL

built-in functions.

However, you IDL experts may not think so. What would be the reasons
for not throwing a warning? Thanks!

Fabien

Page 5 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

