Subject: Re: creating a 2D mask for image filtering Posted by David Fanning on Wed, 17 Aug 2011 13:11:06 GMT View Forum Message <> Reply to Message

Dave Higgins writes:

```
    I need to create a 2D mask to filter data in the frequency domain
    (apodization). I would like to leave 0.8 of the centre-to-edge of the
    data untouched (i.e. a circle of untouched data), and then a Hanning-
    type shape to smooth down to zero at the edges. (Think of an upside-
    down frying pan, kinda.) I can apply a Hanning filter with
    apod_fn = HANNING(kx_res, ky_res, alpha=0.5)
    but of course the centre area which I would like to have untouched
    doesn't exist, and the filter is too aggressive. I'd go without the
    Hanning shape requirement if I could get more-or-less the right shape.
    I see also DIGITAL_FILTER, but can't seem to widen the filter with my
    changes to it's arguments.
```

> Thanks for any pointers.

I would construct your filter something like this:

```
s = Size(image, /Dimensions)
hf = Hanning(s[0], s[1], ALPHA=0.5)
thisDevice = !D.Name
Set_Plot, 'Z'
Device, SET_RESOLUTION=s, SET_PIXEL_DEPTH=8, DECOMPOSED=0
Erase, COLOR=0
maxRadius = Max(s)/2
TVCircle, maxRadius*0.8, s[0]/2, s[1]/2, COLOR=1, /FILL
circleMask = TVRD()
Set_Plot, thisDevice
indices = Where(circleMask EQ 1)
hf[indices] = 1
cgSurface, hf
END
```

Cheers,

David

--

David Fanning, Ph.D. Fanning Software Consulting, Inc.

Coyote's Guide to IDL Programming: http://www.idlcoyote.com/

Sepore ma de ni thui. ("Perhaps thou speakest truth.")

Subject: Re: creating a 2D mask for image filtering Posted by David Fanning on Wed, 17 Aug 2011 13:12:40 GMT

View Forum Message <> Reply to Message

```
David Fanning writes:

Whoops, this line:

> maxRadius = Max(s)/2

Should be this:

maxRadius = Min(s)/2

Cheers,

David

--

David Fanning, Ph.D.

Fanning Software Consulting, Inc.

Coyote's Guide to IDL Programming: http://www.idlcoyote.com/
Sepore ma de ni thui. ("Perhaps thou speakest truth.")
```

Subject: Re: creating a 2D mask for image filtering Posted by David Higgins on Wed, 17 Aug 2011 16:44:23 GMT View Forum Message <> Reply to Message

Thanks for the advice, very much appreciated. I followed your general method as follows, but actually it's not the filter shape I want:

```
FUNCTION CIRCLE, xcenter, ycenter, radius
points = (2 * !PI / 99.0) * FINDGEN(100)
x = xcenter + radius * COS(points )
y = ycenter + radius * SIN(points )
RETURN, TRANSPOSE([[x],[y]])
END

PRO apod_filter
image = dist(512)
WINDOW, 0, TITLE = 'Test data before filtering'
SHADE_SURF, image
s = Size(image, /Dimensions)
hf = Hanning(s[0], s[1], ALPHA=0.5)
maxRadius = Min(s)/2;
WINDOW, 1, TITLE = 'temporary window', xsize=s[0], ysize=s[1]
; Use of data coords for "circle" ok since data extent may not be square
```

```
POLYFILL, CIRCLE(s[0]/2-1, s[1]/2-1, 0.8*maxRadius), color=1 circleMask = TVRD()
WDELETE, 1
indices = Where(circleMask EQ 1)
hf[indices] = 1
WINDOW, 2, TITLE = 'Filter to be applied'
SHADE_SURF, hf
WINDOW, 3, TITLE = 'Apodized image'
SHADE_SURF, hf*image
WDELETE, 0, 3
END
```

This produces a step down at the edge of the circle, to where the Hanning window was before the circleMask was applied. But this step-down causes Gibbs ringing in a FT of the data.

I was aiming for a smooth "S" shaped (or similar) reduction of the filter values from the edge of the circle to the edge of the data.

I was wondering if I applied some sort of smoothing to circleMask, it would blur the edge of the circle and achieve the smooth decent at the circle edge:

```
PRO apod filter
  image = dist(512)
  WINDOW, 0, TITLE = 'Test data before filtering'
  SHADE_SURF, image
  s = Size(image, /Dimensions)
  maxRadius = Min(s)/2;
  WINDOW, 1, TITLE = 'temporary window', xsize=s[0], ysize=s[1]
  ; Use of data coords for "circle" ok since data extent may not be square
  POLYFILL, CIRCLE(s[0]/2-1, s[1]/2-1, 0.8*maxRadius), color=1
  circleMask = float(TVRD())
  WDELETE, 1
  help, circlemask
  circleMask = SMOOTH(circleMask, 100, /EDGE TRUNCATE, MISSING=0.0)
  indices = Where(circleMask GT 0.01)
  filter = fltarr(s[0], s[1])
  filter[indices] = circleMask[indices]
  WINDOW, 2, TITLE = 'Filter to be applied'
  SHADE_SURF, filter
  WINDOW, 3, TITLE = 'Apodized image'
  SHADE SURF, filter*image
  WDELETE, 0, 3
END
```

...but this smoothing eats back into my leave-it-alone circle of data; I'd like to start the descent to zero at the edge of the originally defined circleMask.

Thanks for any further help.